K.S. Rangasamy College of Technology

(Autonomous Institution affiliated to Anna University, Chennai)

CURRICULUM AND SYLLABI

FOR

M.Tech. Nanoscience and Technology (For the batch admitted in 2023– 2024)

R2022

Accredited by NAAC A++, Approved by AICTE, Affiliated to Anna University, Chennai.

> KSR Kalvi Nagar, Tiruchengode – 637 215. Namakkal District, Tamil Nadu, India.

Department of Nano Science and Technology

VISION

• To excel as a world class teaching and research hub in Nanoscience and Technology.

MISSION

- To facilitate students and researchers to engage in need-based research in multidisciplinary domains.
- To engage in transformative technology based education that builds industry and society.

Program Educational Objectives (PEOs) for M.Tech. (NST) Programme

- **PEO1:** Our graduates will demonstrate their competence in the processing of nanostructured materials and use them for effective industrial applications.
- **PEO2:** Our graduates will demonstrate interdisciplinary proficiency both in theory and practice in Nanoscience and Technology research.
- **PEO3:** Our graduates will apply the scientific concepts and mathematical analysis to bring out need based nano-products with ethical responsibility.

PROGRAMME OUTCOMES (POs) Engineering Graduates will be able to:

Engineering Graduates will be able to:

- **PO1:** Ability to understand the importance of Nanoscience and Technology and bring out scientific solution for unsolved problems
- **PO2:** Ability to implement multidisciplinary concepts and ideas for the development of innovative

Technologies.

- **PO3:** Capability to demonstrate leadership, quality and entrepreneurship.
- **PO4:** Demonstrate technical skills in operation and maintenance of sophisticated instrumentations.
- **PO5:** Ability to protect their innovative research through IPR.
- **PO6:** Ability to bring out good quality research proposal as well as research publications.

Program Specific Outcomes (PSOs) for M.Tech. (NANO) Programme

Engineering Graduates will be able to:

- **PSO1:** Analyse and synthesize new nano materials for multiple applications.
- **PSO2:** Design processing conditions to engineer functional nanomaterials.
- **PSO3:** Apply and transfer interdisciplinary systems and Engineering approaches to the field of Nanotechnology.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) WITH PROGRAMME OUTCOMES (POs)

The M.Tech. Nanoscience and Technology Programme out comes leading to the achievement of the objectives are summarized in the following Table.

Program Specific	F	PROGRA MME OUTCOMES (POs)										
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6						
PSO1	2	3	3	2	2	2						
PSO2	3	2	2	2	3	2						
PSO3	2	2	3	2	2	3						

Contributions:1-low,2- medium,3-high

Credit Distribution for M.Tech. (NST) Progrmme-2022 -2023 Batch

S No	Category	Cre	edits Pe	r Semes	ster	Total	Percentage
3. NO.	Category		II	III	IV	Credits	%
1.	BS	04				04	5.47
2.	PC	17	19	06	-	42	57.53
3.	PE	-	03	06	-	09	12.32
4.	OE	-	-	-	-	-	-
5.	EEC	-	-	06	12	18	24.65
6.	AC	AC I	AC II	-	-	-	-
7.	MC	-	-	-	-	-	-
1	Fotal	21	22	18	12	73	100

HS – HUMANITIESANDSOCIALSCIENCES BS - BASICSCIENCE ES - ENGINEERINGSCIENCES PC - PROFESSIONALCORE PE - PROFESSIONALELECTIVES MC - MANDATORYCOURSES OE - OPENELECTIVES

EEC - EMPLOYABILITYENHANCEMENTCOURSES GE - GENERALELECTIVECOURSES

Open Electives are courses offered by different departments that do not have any prerequisites and could be of interest to students of any branch

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE -637215 (An Autonomous Institution affiliated to Anna University)

_		BASIC SCIENCE (BS)										
	S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Ρ	С	Prerequisite		
	1.	60 PNT 101	Mathematical Modelling and Simulation	BS	4	3	1	0	4	Nil		

BASIC SCIENCE (BS)

PROFESSIONAL CORE (PC)

S. No.	Course Code	Course Title	Category	Contact Periods	L	т	Р	С	Prerequisite
1.	60 PNT 101	Mathematical Modelling and Simulation	BS	4	3	1	0	4	Nil
2.	60 PNT 102	Quantum Mechanics	PC	4	3	1	0	4	Basics of quantum mechanics
3.	60 PNT 103	Synthesis of Nanostructured Materials	PC	3	3	0	0	3	Basics of Nanomaterial and chemistry
4.	60 PNT 104	Nanoelectronics	PC	3	3	0	0	3	Fundamental of electronics
5.	60 PNT 105	Nano Biotechnology	PC	3	3	0	0	3	Fundamental of biology
6.	60 PNT 1P1	Advanced Nanomaterials Synthesis Laboratory	PC	4	0	0	4	2	Nil
7.	60 PNT 1P2	Nano Biotechnology Laboratory	PC	4	0	0	4	2	Nil
8.	60 PNT 201	Advanced Characterisation Techniques	PC	3	3	0	0	3	Nil
9.	60 PNT 202	Nano Photonics and its Applications	PC	3	3	0	0	3	Nil
10.	60 PNT 203	Nanolithography and Nanofabrication	PC	3	3	0	0	3	Nil
11.	60 PNT 204	Advanced Carbon Nanotubes and Applications	PC	3	3	0	0	3	Basics of Carbon Nanotubes
12.	60 PED 001 / 60 PDB E26	Research Methodology and IPR	PC	3	3	0	0	3	Nil
13.	60 PNT 2P1	Advanced Characterisation Laboratory	PC	4	0	0	4	2	Nil
14.	60 PNT 2P2	Nanomaterials Device Fabrication and Analysis Laboratory	PC	4	0	0	4	2	Nil
15.	60 PNT 301	Applications of Nanocomposites	PC	3	3	0	0	3	Nil
16.	60 PNT 302	Nanotechnology in Energy Storage Devices	PC	3	3	0	0	3	Basics of Electronics

Passed in BoS Meeting held on 22/11/2023 Approved in Academic Council Meeting held on 23/12/2023

PROFESSIONAL ELECTIVES (PE) SEMESTER II, ELECTIVE I

S. No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С	Prerequisite
1.	60 PNT E11	Polymers in Nanotechnology	PE	3	3	0	0	З	Nil
2.	60 PNT E12	Nanotechnology in Biomedical Instrumentation	PE	3	3	0	0	3	Nil
3.	60 PNT E13	Nanosensors and Applications	PE	3	3	0	0	3	Nil
4.	60 PNT E14	Nanodevices	PE	3	3	0	0	3	Nil
5.	60 PNT E15	Advanced Solid State Materials	PE	3	3	0	0	3	Nil
6.	60 PNT E16	Thin Film Science and Technology	PE	3	3	0	0	3	Nil

SEMESTER III, ELECTIVE II

S. No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С	Prerequisite
1.	60 PNT E21	Nanotribology	PE	3	3	0	0	3	Nil
2.	60 PNT E22	Nanotechnology in Automobiles	PE	3	3	0	0	3	Nil
3.	60 PNT E23	Corrosion Engineering	PE	3	3	0	0	3	Nil
4.	60 PNT E24	Nano Safety and Environmental Issues	PE	3	3	0	0	3	Nil
5.	60 PNT E25	Micro and Nano Electro Mechanical Systems	PE	3	3	0	0	3	Nil
6.	60 PNT E26	Nanotechnology In Industries	PE	3	3	0	0	3	Nil

SEMESTER III, ELECTIVE III

S. No.	Course Code	Course Title	Category	Contact Periods		т	Р	С	Prerequisite
1.	60 PNT E31	Social Impact of Nanotechnology	PE	3	3	0	0	3	Nil
2.	60 PNT E32	Computer Modeling and Simulation	PE	3	3	0	0	3	Nil
3.	60 PNT E33	Nanotechnology in Defense and Security	PE	3	3	0	0	3	Nil
4.	60 PNT E34	Nanotechnology in Food Preservation and Safety Management	PE	3	3	0	0	3	Nil
5.	60 PNT E35	Nanotechnology in Textile and Agriculture Industry	PE	3	3	0	0	3	Nil
6.	60 PNT E36	Self Assembly of Nanostructures	PE	3	3	0	0	3	Nil

AUDITCOURSES (AC) Semester I &II

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Ρ	С	Prerequisite
1.	60 PAC 001	English for Research Paper Writing	AC	2	2	0	0	0	Nil
2.	60 PAC 002	Disaster Management	AC	2	2	0	0	0	Nil
3.	60 PAC 003	Constitution of India	AC	2	2	0	0	0	Nil

EMPLOYABILITY ENHANCEMENT COURSES (EEC)

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Ρ	С	Prerequisite
1.	60 PNT 3P1	Project Work - Phase I	EEC	12	0	0	12	6	Nil
2.	60 PNT 4P1	Project Work - Phase II	EEC	24	0	0	24	12	Nil

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE -637215

(An Autonomous Institution affiliated to Anna University)

COURSES OF STUDY

(For the candidates admitted from 2022-2023 onwards)

SEMESTER - I

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Ρ	С
		THEORY						
1.	60 PNT 101	Mathematical Modelling and Simulation	BS	4	3	1	0	4
2.	60 PNT 102	Quantum Mechanics	PC	4	3	1	0	4
3.	60 PNT 103	Synthesis of Nanostructured Materials	PC	3	3	0	0	3
4.	60 PNT 104	Nanoelectronics	PC	3	3	0	0	3
	60 PNT 105	Nano Biotechnology	PC	3	3	0	0	3
6	60 PAC 001	English for Research Paper Writing	AC	2	2	0	0	0
		PRACTICALS						
7.	60 PNT 1P1	Advanced Nanomaterials Synthesis Laboratory	PC	4	0	0	4	2
8.	60 PNT 1P2	Nano Biotechnology Laboratory	PC	4	0	0	4	2
			Total	27	17	2	8	21

SEMESTER - II

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Ρ	С
		THEORY						
1.	60 PNT 201	Advanced Characterisation Techniques	PC	3	3	0	0	3
2.	60 PNT 202	Nano Photonics and its Applications	PC	3	3	0	0	3
3.	60 PNT 203	Nanolithography and Nanofabrication	PC	3	3	0	0	3
4.	60 PNT 204	Advanced Carbon Nanotubes and Applications	PC	3	3	0	0	3
5.	60 PNT E1*	Professional Elective I	PE	3	3	0	0	3
6.	60 PED 001 / 60 PDB E26	Research Methodology and IPR	PC	3	3	0	0	3
7.	60 PAC 002	Disaster Management	AC	2	2	0	0	0
		PRACTICALS						
8.	60 PNT 2P1	Advanced Characterisation Laboratory	PC	4	0	0	4	2
9.	60 PNT 2P2	Nanomaterials Device Fabrication and Analysis Laboratory	PC	4	0	0	4	2
			Total	28	20	0	8	22

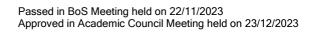
SEMESTER - III

S. No.	Course Code	Course Title	Category	Contact Periods	L	Т	Ρ	С
		THEORY						
1.	60 PNT 301	Applications of Nanocomposites	PC	3	3	0	0	3
2.	60 PNT 302	Nanotechnology in Energy Storage Devices	PC	3	3	0	0	3
3.	60 PNT E2*	Professional Elective II	PE	3	3	0	0	3
4.	60 PNT E3*	Professional Elective III	PE	3	3	0	0	3
		PRACTICALS						
5.	60 PNT 3P1	Project Work - Phase I	EEC	12	0	0	12	6
			Total	24	12	0	12	18

SEMESTER - IV

S. No.	Course Code	Course Title	Category	Contact Periods	L	т	Ρ	С
		PRACTICALS						
1.	60 PNT 4P1	Project Work - Phase II	EEC	24	0	0	24	12
			Total	24	0	0	24	12

TOTAL NUMBER OF CREDITS TO BE EARNED FOR AWARD OF THE DEGREE =73


Note:

HS- Humanities and Social Sciences including Management Courses BS- Basic Science Courses ES-Engineering Science Courses PE-Professional Core Courses PE-Professional Elective Courses OE- Open Elective Courses EEC-Employability Enhancement Courses MC-Mandatory Courses AC-Audit Courses

- L : Lecture
- T : Tutorial
- P : Practical

Note:

- 1. Hour Lecture is equivalent to 1 credit
- 2. Hour Tutorial is equivalent to 1credit
- 3. HoursPracticalisequivalentto1credit

K.S.RANGASAMY COLLEGE OF TECHNOLOGY, TIRUCHENGODE - 637215 (An Autonomous Institution affiliated to Anna University)

M.Tech. Degree Programme

SCHEME OF EXAMINATIONS

(For the candidates admitted from 2022-2023 onwards)

FIRST SEMESTER

			Duration of	Weighta	ge of Marks		Minimum for Pass i Semes Exan	n End ster
S. No.	Course Code	Name of the Course	Internal Exam	Continuous Assessment*	End Semester Exam **	Max. Marks	End Semester Exam	Total
			THEORY	(L
1	60 PNT 101	Mathematical Modelling and Simulation	2	40	60	100	45	100
2	60 PNT 102	Quantum Mechanics	2	40	60	100	45	100
3	60 PNT 103	Synthesis of Nanostructured Materials	2	40	60	100	45	100
4	60 PNT 104	Nanoelectronics	2	40	60	100	45	100
5	60 PNT 105	Nano Biotechnology	2	40	60	100	45	100
6	60 PAC 001	English for Research Paper Writing	2	100	00	100	00	0
			PRACTIC	AL				
7	60 PNT 1P1	Advanced Nanomaterials Synthesis Laboratory	3	60	40	100	45	100
8	60 PNT 1P2	Nano Biotechnology Laboratory	3	60	40	100	45	100

SECOND SEMESTER

			Duration of	Weight a	ge of Marks	6	Minimum for Pass Seme Exa	in End ster
S. No.	Course Code	Name of the Course	Internal Exam	Continuous Assessment*	End Semester Exam **	Max. Marks	End Semester Exam	Total
	•		THEOR	Y				
1	60 PNT 201	Advanced Characterisation Techniques	2	40	60	100	45	100
2	60 PNT 202	Nano Photonics and its Applications	2	40	60	100	45	100
3	60 PNT 203	Nanolithography and Nanofabrication	2	40	60	100	45	100
4	60 PNT 204	Advanced Carbon Nanotubes and Applications	2	40	60	100	45	100
5	60 PNT E1*	Professional Elective I	2	40	60	100	45	100
6	60 PED 001 /	Research Methodology and	2	40	60	100	45	100

Passed in BoS Meeting held on 22/11/2023 Approved in Academic Council Meeting held on 23/12/2023

	60 PDB E26	IPR						
7	60 PAC 002	Disaster Management	2	100	00	100	00	0
			PRACTIC	AL				
8	60 PNT 2P1	Advanced Characterisation Laboratory	3	60	40	100	45	100
9	60 PNT 2P2	Nanomaterials Device Fabrication and Analysis Laboratory	3	60	40	100	45	100

THIRD SEMESTER

			Duration of	Weight a	ige of Marks	6	Minimum for Pass Seme Exa	in End ster
S. No.	Course Code	Name of the Course	Internal Exam	Continuous Assessment*	End Semester Exam **	Max. Marks	End Semester Exam	Total
	•		THEORY	(•		•	
1	60 PNT 301	Applications of Nanocomposites	2	40	60	100	45	60
2	60 PNT 302	Nanotechnology in Energy Storage Devices	2	40	60	100	45	60
3	60 PNT E2*	Professional Elective II	2	40	60	100	45	60
4	60 PNT E3*	Professional Elective III	2	40	60	100	45	60
			PRACTICA	AL.				
5	60 PNT 3P1	Project Work - Phase I	-	100	-	100	-	-

FOURTH SEMESTER

			Duration	-	tage of Mark	S	Minimun for Pass Seme Exa	s in End ester
S. No.	Course Code	Name of the Course	of Internal Exam	Continuous Assessment*	End Semester Exam **	Max. Marks	End Semester Exam	Total
	·		PRACT	ICAL				
1	60 PNT 4P1	Project Work - Phase II	-	40	60	100	45	100

* CA evaluation pattern will differ from course to course and for different tests. This will have to be declared in advance to students. The department will put a process in place to ensure that the actual test paper follow the declared pattern.

** End Semester Examination will be conducted for maximum marks of 100 and subsequently be reduced to 60 marks for the award of terminal examination marks

60 PNT 101	Mathematical Modelling and	Category	L	Т	Ρ	Credit
	Simulation	BS	3	1	0	4

Objectives

- To acquire knowledge of solving differential equations.
- To familiarize the concepts of numerical integration techniques. •
- To get exposed to modeling equations and their applications. •
- To acquire knowledge on various modeling and simulation techniques. •
- To understand various methods in testing of hypothesis. .

Prerequisite NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Solve differential equations using finite difference scheme.	Remember, Understand, Apply
CO2	Apply appropriate techniques for numerical integration	Remember, Understand, Apply
CO3	Crete a model that adequately describes the problems, using the appropriate technology.	Remember, Understand, Apply
CO4	Simulate Nano technological materials systems with the aid of computation.	Remember, Understand, Apply
CO5	Apply the statistical tests in data investigation.	Remember, Understand, Apply

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	3						2	2
CO2	3	3	3	3	2						2	2
CO3	2	2	2	2	2						2	2
CO4	2	2	2	2	2						2	2
CO5	3	3	3	3	3						2	2

Assessment Pattern

Bloom's Category		s Assessment s (Marks)	Model Exam	End Sem Examination
Dieemeeatogery	1	2	(Marks)	(Marks)
Remember (Re)	10	10	10	10
Understand (Un)	10	10	30	30
Apply (Ap)	40	40	60	60
Analyze (An)	0	0	0	0
Evaluate (Ev)	0	0	0	0
Create (Cr)	0	0	0	0
Total	60	60	100	100

	001			tical Modellin Science and					
	н	lours/Week			Credit	1	Maximum I	Marks	
Semest	er I		Р	Total hrs	Clean	CA	ES	Total	
1	3	1	0	60	4	40	60	100	
Euler's problen	ICAL SOLUTION OF method – Modified E ns: Finite difference n lic equations – Hyperl	uler's methonethod – Po	od – Rur bisson eq	UATIONS	nod (Fourth	order only	y). Bounda	ary value	[9]
lumeric Juadratu	CAL INTEGRATION al integrations by Tra ure formula – Double i n-Ritz method – Galer	intergrals us	sing Trap						[9]
Mathen phenon	MATICAL MODELING natical modeling – Phy nena- Concept of phy cal solutions.	ysical simula							[9]
process	concepts of simulatio sing of materials – M								[9]
	Carlo simulation – Mo	dified Monte							
Testing and go	Carlo simulation – Mo G OF HYPOTHESIS of hypothesis for sma odness of fit. ANOVA cation – Randomized	Ill samples u A:One way	e Carlo te sing t-tes classific	echniques. st, F-test , Chi-s cation – Comp	quare test fo	or indeper	ndence of a	attributes	[9
ESTIN Testing and go classific	G OF HYPOTHESIS of hypothesis for sma odness of fit. ANOVA cation – Randomized	III samples u A:One way	e Carlo te sing t-tes classific	echniques. st, F-test , Chi-s cation – Comp	quare test fo letely Rand n .	or indeper omized D	ndence of a	attributes wo way	
ESTIN Testing and go classific Text bo	G OF HYPOTHESIS of hypothesis for sma odness of fit. ANOVA cation – Randomized ook(s):	III samples u \ : One way Block Desig	e Carlo te Ising t-tes / classific in – Latin	echniques. st, F-test , Chi-s cation – Comp Square Desig	equare test fo letely Rand n . Tota	or indeper omized D al Hours:	ndence of a besign – T 45 + 15 (attributes ⁻wo way Tutorial)	60
Testing and go classific Text bo 1. S.	G OF HYPOTHESIS of hypothesis for sma odness of fit. ANOVA cation – Randomized	III samples u \ : One way Block Desig	e Carlo te Ising t-tes / classific in – Latin	echniques. st, F-test , Chi-s cation – Comp Square Desig	equare test fo letely Rand n . Tota	or indeper omized D al Hours:	ndence of a besign – T 45 + 15 (attributes ⁻wo way Tutorial)	60
Testing and go classifie Text be 1. S. De 2. D. Ad	G OF HYPOTHESIS of hypothesis for sma odness of fit. ANOVA cation – Randomized ook(s): .C. Chapra and R.P.C elhi, 2010 . Frenkel and B. Smitt cademic Press, 2002	III samples u A : One way Block Desig Canale, "Nu	e Carlo te ising t-tes / classific in – Latin merical n	echniques. st, F-test , Chi-s cation – Comp Square Desig nethods for Er	equare test fo letely Rand n . Tota ngineers", Ta	or indeper omized D al Hours: ata McGra	ndence of a Design – T 45 + 15 (aw Hill, 6t	attributes [∙] wo way Tutorial) h Edition,	[9] 60
Testing and go classifie Text be 1. S. De 2. D. Ad	G OF HYPOTHESIS of hypothesis for sma odness of fit. ANOVA cation – Randomized ook(s): .C. Chapra and R.P.C elhi, 2010 . Frenkel and B. Smit	III samples u A : One way Block Desig Canale, "Nu	e Carlo te ising t-tes / classific in – Latin merical n	echniques. st, F-test , Chi-s cation – Comp Square Desig nethods for Er	equare test fo letely Rand n . Tota ngineers", Ta	or indeper omized D al Hours: ata McGra	ndence of a Design – T 45 + 15 (aw Hill, 6t	attributes [∙] wo way Tutorial) h Edition,	60 Nev
Testing and go classific 1. S. 2. D. Ac Refere 1. M	G OF HYPOTHESIS of hypothesis for sma odness of fit. ANOVA cation – Randomized ook(s): .C. Chapra and R.P.C elhi, 2010 . Frenkel and B. Smitt cademic Press, 2002	III samples u A : One way Block Desig Canale, "Nu h, "Understa r and R.K.Ja	e Carlo te ising t-tes / classific in – Latin merical n anding m	echniques. et, F-test, Chi-s cation – Comp Square Desig nethods for Er olecular simula nerical Methods	equare test fo letely Rand n . Tot: ngineers", Ta ation from a	or indeper omized D al Hours: ata McGra	ndence of a Design – T 45 + 15 (aw Hill, 6t o applicati	attributes wo way Tutorial) h Edition, ions", Kl	60 Nev
Testing and go classific 1. S. Do 2. D. Ac Refere 1. M No 2. R	G OF HYPOTHESIS of hypothesis for sma odness of fit. ANOVA cation – Randomized ook(s): .C. Chapra and R.P.C elhi, 2010 . Frenkel and B. Smitt cademic Press, 2002 .nce(s): .K.Jain, S.R.K Iyenga	III samples u A : One way Block Desig Canale, "Nu h, "Understa r and R.K.Ja (P) Ltd., 6th . Harris, "A	e Carlo te ising t-tes / classific in – Latin merical n anding m ain, "Num Edition, 2	echniques. st, F-test , Chi-s cation – Comp Square Desig nethods for Er olecular simula nerical Methods 2012.	equare test for iletely Rand in . Tota agineers", Ta ation from a s for Scienti	or indeper omized D al Hours: ata McGra lgorithm to fic and En	ndence of a Design – T 45 + 15 (aw Hill, 6t o applicati	attributes wo way Tutorial) h Edition, ions", Kl	60 Nev
Testing and go classific 1. S. 2. D. Ac Refere 1. M No 2. R Th	G OF HYPOTHESIS of hypothesis for sma odness of fit. ANOVA cation – Randomized ook(s): .C. Chapra and R.P.C elhi, 2010 . Frenkel and B. Smith cademic Press, 2002 nce(s): .K.Jain, S.R.K Iyenga ew Age International (.J. Schilling and S.L	Ill samples u A : One way Block Desig Canale, "Nur h, "Understa r and R.K.Ja (P) Ltd., 6th . Harris, "A ew Delhi, 20	e Carlo te ising t-tes / classific in – Latin merical n anding m ain, "Num Edition, 2 .pplied N 004	echniques. et, F-test, Chi-s cation – Comp Square Desig nethods for Er olecular simula nerical Methods 2012. Iumerical Meth	equare test for letely Rand n . Tota ngineers", Ta ation from a s for Sciention mods for Er	or indeper omized D al Hours: ata McGra gorithm to fic and En	ndence of a Design – T 45 + 15 (aw Hill, 6t o applicati ngineering using MA	attributes wo way Tutorial) h Edition, fons", Kl Computat	60 Nev
ESTING Testing and go classific 1. S. Do 2. Do Ac Refere 1. M No 2. R. Th 3. Er 4. S.	G OF HYPOTHESIS of hypothesis for sma odness of fit. ANOVA cation – Randomized ook(s): .C. Chapra and R.P.C elhi, 2010 . Frenkel and B. Smitl cademic Press, 2002 	Ill samples u A : One way Block Desig Canale, "Nur h, "Understa r and R.K.Ja (P) Ltd., 6th . Harris, "A ew Delhi, 20 red Engineer poor, "Fund	e Carlo te ising t-tes / classific n – Latin merical n anding m ain, "Num Edition, 2 pplied N 004 ring Math	echniques. et, F-test, Chi-s cation – Comp Square Desig nethods for Er olecular simula nerical Methods 2012. lumerical Methods nematics", John	equare test for letely Rand in . Tota agineers", Ta ation from a s for Scientif hods for Er howiley & Sc	or indeper omized D al Hours: ata McGra lgorithm to fic and En ogineers to ons, 10th	adence of a Design – T 45 + 15 (aw Hill, 6t o applicati ngineering using MA ⁻ Edition, 20	attributes wo way Tutorial) h Edition, ions", Kl Computat TLAB and	60 New luwa

*SDG:4- Quality Education and opportunities for all

Course Contents and Lecture Schedule

S.No.	Торіс	No. of Hours
1.0	NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS	
1.1	Euler's and Modified Euler's Method	1
1.2	Runge-Kutta method (Fourth order only).	1
1.3	Boundary value problems: Finite difference method	2
1.4	Poisson equation	2
1.5	Laplace's equation Gauss seidal method	1
1.6	Parabolic equations	2
1.7	Tutorial	3
2.0	NUMERICAL INTEGRATION	
2.1	Numerical integrations by Trapezoidal and Simpson's 1/3 and 3/8 rules	1
2.2	Two and Three point Gaussian quadrature formula	1
2.3	Double integrals using Trapezoidal and Simpson's rules	2
2.4	Finite Element method: Rayleigh-Ritz method	1
2.5	Finite Element method: Galerkin method	1
2.6	Finite Element method: Galerkin method problems	1
2.7	Tutorial	3
3.0	MATHEMATICAL MODELING	
3.1	Mathematical modeling introduction	1
3.2	Physical simulation	1
3.3	Mathematical modeling Advantages and limitations	2
3.4	Process control	2
3.5	Transport phenomena	1
3.6	Concept of physical domain and computational domain	1
3.7	Assumptions and limitations in numerical solutions	1
3.8	Tutorial	3
4.0	SIMULATION	5
4.1	Basic concepts of simulation and data manipulation, data exchange of the structure	1
4.2	properties and processing of materials	2
4.3	Monte Carlo method	1
4.4	Basics of the Monte Carlo method	1
4.5	Algorithms for Monte Carlo simulation	1
4.6	Modified Monte Carlo techniques	2
4.7	Tutorial	3
5.0	TESTING OF HYPOTHESIS	-
5.1	Testing of hypothesis for small samples using t-test	2
5.2	F-test, Chi-square test for independence of attributes and goodness of fit	1
5.3	Tutorial	1
5.4	ANOVA: One way classification – Completely Randomized Design	1
5.5	Two-way classification – Randomized Block Design	2
5.6	Latin Square Design	2
5.9	Tutorial	3
	Total	60

Course Designers

-prabakaran@ksrct.ac.in

1. Dr.K.PRABAKARAN -<u>prabakara</u> Passed in BoS Meeting held on 22/11/2023 Approved in Academic Council Meeting held on 23/12/2023

60	PNT	102
----	-----	-----

Quantum Mechanics

Objective

- To learn the Plank's quantum hypothesis
- To apply the function of operator
- To identify the operators and computation law
- To analysis the atom model
- To apply the principle of quantum mechanics

Prerequisite

Basics of quantum mechanics

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recall basic knowledge of quantum theory	Remember		
CO2	CO2 Analyze the wave mechanics			
CO3	Apply the operators in specific problems	Analyze		
CO4	Apply the variation principle in different methods	Apply		
CO5	Identify the types of approximation methods	Analyze		

Mapping with Programme Outcomes

ſ	COs	PO1	PO2	PO3	PO4	PO5	PO6
ſ	CO1	3	3	3	2	2	1
ſ	CO2	3	3	3	2	2	1
ſ	CO3	3	3	3	2	2	1
ſ	CO4	3	3	3	2	2	1
	CO5	3	3	3	2	2	1

Assessment Pattern

Bloom's Category	Continuous Asses	sment Tests (Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember	10	10	20
Understand	10	10	20
Apply	10	10	30
Analyze	10	10	20
Evaluate	10	10	20
Create	10	10	10

Category	L	т	Р	Credit
PC	3	1	0	4

		K.S.F	Rangasamy	/ College of	Technology	- Autonom	ous Regula	tion	
				60 PNT 102	- Quantum M	lechanics*			
			Depa	rtment of N	anoscience a	and Techno	logy		
Seme	octor	Hours/Week		Total hrs.	Credit	Ма	aximum Marl	rks	
Seme	ster	L	Т	Р	Total III's.	С	С	E	Total
I		3	1	0	60	4	40	60	100
Limita Wave	nature	classical m of particles	s - Heisenbe	erg Uncertair	ntum hypothes nty principle - dimensional b	Schrodinge	r's time depe	endent and	[12]
WAVE Linear of qua orbital	E MEC r opera antum r ls - Ma	HANICS tor - Hermit nechanics - trix represe	ian operato Equations ntation of w	r - Linear ha in motion – E ave function	rmonic oscilla Ehrenfest's the	tor - Operate	or method –	Postulates	[12]
OPERATORS AND COMPUTATION LAWS Linear momentum operator – Properties of Hermitian operator – Angular momentum operators – Ladder operators – Parity operator – Commuting and non-commuting operators – Commutation relation Lx and Ly - Commutation relation L ² and Lx – Commutation relation L+ and L					[12]				
√ariat ⊃ertur	tion at rbation		Ground stat		en molecule - ïrst order pert				[12]
Klein- Dirac': energ	Gordor s equa	tion for a fro es – Hartre	- Charge ar ee particle - e-Fockequa	Dirac's mat	nsities – Inad rices – Prope opproximation nics.	rties of Dirac	c's matrices approximati	– Negative on-Sudden	[12]
Total Hours (45+15)								ırs (45+15)	60
	ence(s	•							
					entice Hall of I				
					Mechanics Fu				
					Mechanics"U		-		
4		hatak and L ations,2004		"Quantum M	lechanics:The	eory and Ap	plications", ł	Kluwer Acade	mic

*SDG:4- Quality Education and opportunities for all

Course Contents and Lecture Schedule

S. No	Торіс	No. of
1	INTRODUCTION	Hours
1.1	Limitation of classical mechanics	1
1.2	Plank's quantum hypothesis	1
1.3	Einstein's photoelectric effect	1
1.4	Wave nature of particles	1
1.5	Heisenberg Uncertainty principle	1
1.6	Schrodinger's time dependent wave equations	2
1.7	Schrodinger's time independent wave equations	2
1.8	Particle in a one dimensional box	1
1.9	Harmonic oscillator	2
2	WAVE MECHANICS	
2.1	Linear operator	1

2.2	Hermitian operator	1		
2.3	Linear harmonic oscillator	1		
2.4	Operator method	1		
2.5	Postulates of quantum mechanics			
2.6	Equations in motion	1		
2.7	Ehrenfests theorem	2		
2.8	Hydrogen atom - Hydrogen orbitals	2		
2.9	Matrix representation of wave functions	2		
3	OPERATORS AND COMPUTATION LAWS			
3.1	Linear momentum operator	1		
3.2	Properties of Hermitian operator	1		
3.3	Angular momentum operators	1		
3.4	Ladder operators	1		
3.5	Parity operator	1		
3.6	Commuting and non-commuting operators	1		
3.7	Commutation relation Lx and Ly	2		
3.8	Commutation relation L ² and Lx	2		
3.9	Commutation relation L+ and L-	2		
4	VARIATION AT PRINCIPLES			
4.1	Variation at method	1		
4.2	Ground state of hydrogen molecule	1		
4.3	Ground state of Helium atom	2		
4.4	Perturbation theory in non-degenerate case	2		
4.5	First order perturbation	2		
4.6	Harmonic perturbation	2		
4.7	Transition to continuous states	2		
5	APPROXIMATION METHODS			
5.1	Klein-Gordon equation	1		
5.2	Charge and current densities	1		
5.3	Inadequacy of Klein-Gordon equation	1		
5.4	Dirac's equation for a free particle	1		
5.5	Dirac's matrices – Properties of Dirac's matrices	1		
5.6	Negative energy states	1		
5.7	Hartree-Fockequation.WKB Approximations	2		
5.8	Adiabatic approximation - Sudden approximation.	2		
5.9	Applications of quantum mechanics	1		
	Total	45		

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

Synthesis of Nanostructured Materials

Category	L	т	Ρ	Credit
PC	3	0	0	3

Objective

- •To practice the simple methods for the synthesis of nanomaterials.
- •To synthesize nanomaterials by various chemical and physical routes.
- •To study the merits of various process techniques.
- •To inculcate different process techniques for nanostructure materials.
- •To understand the biological and hybrid types of synthesis techniques.

Prerequisite

NiL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	CO1 Synthesis the various nanoscale materials by the application of chemical methods		
CO2	Explain the thin film fabrication using physico chemical technique	Analyse	
CO3	Sketch the mechanical approaches for nano materials production	Apply	
CO4	Create the micro and nanoscale patterns by approaching Etching process	Create	
CO5	Classify the bio and green synthesis process for nano materials	Analyse	

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	1	2	2
CO2	3	2	1	2	2	3
CO3	2	3	2	3	2	2
CO4	3	2	1	2	2	3
CO5	2	3	2	2	2	3

Assessment Pattern

Bloom's Catagory	Continuous Assessi	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	30
Evaluate	10	10	10
Create	10	10	10

	K.S.F	Rangasamy	College of	Technology	- Autonom	ous Regula	tion	
60 PNT 103 - Synthesis of Nanostructured Materials*								
		Depa	rtment of N	anoscience a	and Techno	logy		
Semester	ł	Hours/Weel	(Total hrs.	Credit	Ма	ximum Marks	
Semester	L	Т	Р	rotarnis.	С	С	E	Total
I	3	0	0	45	3	40	60	100
Sol-gel synthesis –different types of coatings -Spin coating- Self-assembly- (Periodic) - starting points for self- assembly- Directed self-assembly using conventional lithography-Template self-assembly-Vapor liquid solid growth- Langmuir-Blodgett films – DNA self-assembly-Hummers method.							[9]	
CVD AND PVD METHODS CVD Chemical vapor deposition –Atmospheric pressure CVD (APCVD) – Low pressure CVD (LPCVD) - Plasma enhanced chemical vapor deposition (PECVD) - The HiPCO method - Photo- enhanced chemical vapor deposition (PHCVD)- LCVD Laser–Induced CVD. Physical vapor deposition- Sputter technologies- Diode sputtering - Magnetron sputtering- Ion beam (sputter)							[9]	

Passed in BoS Meeting held on 22/11/2023 Approved in Academic Council Meeting held on 23/12/2023

	sition, ion implantation and ion assisted deposition - Cathodic arc deposition - Pulsed laser				
depos	sition- metal organic chemical vapor deposition (MOCVD) and Molecule beam epitaxy (MBE).				
MEC	HANICAL METHODS				
Micro	milling – Micro drilling – Micro grinding processes - Electrical discharge machining (EDM) micro	[0]			
mach	ining - laser micro/nanomachining - Dry etching- isotropic anisotropic etching - Reactive ion	[9]			
etchir	ng- Magnetically enhanced RIE- Ion beam etching.				
ETCH	HING TECHNIQUES				
Impo	rtant of etching process in semiconductor- Wet etching of silicon - Isotropic etching -	[9]			
Anisotropic etching – Electrochemical etching - Vapor phase etching - Dry etching- Other etching					
techn	iques-Wet chemical etching- Application and properties of different etchants.				
Biolo	gical and green Synthesis				
Micro	bial synthesis- bacteria- yeast- algae -green synthesis -bio fertilizer- plant extract- neem-tridax-	[9]			
eucal	yptus-fruit peel- advantages, limitations, applications.				
	Total Hours	45			
Refer	rence(s):				
1	M. J. Jackson, "Micro fabrication and Nano manufacturing", CRC Press, 2005.				
2	P.Rai-Choudhury, "Handbook of Micro lithography, Micro machining, and Microfabrication", Ve	ol. 2,			
2	SPIE Press, 1997.				
G. Cao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications" Imperial College					
5	Press, 2004				
4	W.T.S. Huck, "Nanoscale Assembly: Chemical Techniques (Nanostructure Science and				
	Technology)", Springer 2006				

*SDG:8- Productive employment

Course Content and Lecture Schedule

S. No	No Topic						
1	CHEMICAL METHODS						
1.1	Sol-gel synthesis	1					
1.2	Different types of coatings and spin coatings	1					
1.3	Self-assembly (Periodic)	1					
1.4	Starting points for self- assembly	1					
1.5	Directed self-assembly using conventional lithography	1					
1.6	Template self-assembly	1					
1.7	Vapor liquid solid growth	1					
1.8	Langmuir-Blodgett films	1					
1.9	DNA self-assembly-Hummers method	1					
2	CVD AND PVD METHODS						
2.1	CVD Chemical vapor deposition	1					
2.2	Atmospheric pressure CVD (APCVD)	1					
2.3	Low pressure CVD (LPCVD)	1					
2.4	Plasma enhanced chemical vapor deposition (PECVD) - HiPCO	1					
2.5	Photo-enhanced chemical vapor deposition (PHCVD)- LCVD Laser–Induced CVD	1					
2.6	Physical vapor deposition- Sputter technologies- Diode sputtering	1					
2.7	Magnetron sputtering- Ion beam (sputter) deposition, ion implantation and ion assisted deposition	1					
2.8	Cathodicarc deposition - Pulsed laser deposition	1					
2.9	Metal organic chemical vapor deposition (MOCVD) and Molecule beam epitaxy (MBE).	1					
3	MECHANICAL METHODS						
3.1	Micromilling	1					
3.2	Microdrilling	1					
3.3	Microgrinding processes	1					
3.4	Electrical discharge machining (EDM) micro machining	1					

Passed in BoS Meeting held on 22/11/2023 Approved in Academic Council Meeting held on 23/12/2023

3.5	laser micro/nanomachining	1	
3.6	Dry etching- isotropic anisotropic etching	1	
3.7	Reactive ion etching	1	
3.8	Magnetically enhanced RIE	1	
3.9	Ion beam etching.	1	
4	ETCHING TECHNIQUES		
4.1	Important of etching process in semiconductor	1	
4.2	Wet etching of silicon	1	
4.3	Isotropic etching	1	
4.4	Anisotropic etching	1	
4.5	Electrochemical etching	1	
4.6	Vapor phase etching	1	
4.7	Dry etching	1	
4.8	Other etching techniques, Wet chemical etching.	1	
4.9	Application and properties of different etchants.	1	
5	BIOLOGICAL AND GREEN SYNTHESIS		
5.1	Microbial synthesis	2	
5.2	Bacteria- yeast- algae -green synthesis	1	
5.3	Bio fertilizer- plant extract	1	
5.4	Neem-tridax-eucalyptus-fruit peel	1	
5.5	Advantages, limitations, applications.	1	
	Total Hours		45

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

60 DNT 404	Noncoloctronico	Category	L	т	Р	Credit
60 PNT 104	Nanoelectronics	PC	3	0	0	3

Objective

- To help the learners to understand basic s about the particles and waves
- To provide an overview of the electron transport in semiconductors and nanostructure
- To familiarize learners with the basics of materials in nanoelectronics
- To familiarize the learners with the processing growth fabrication and measurement techniques
- To enlighten the learners to understand various methods, materials and its applications.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Learn an emerging idea of nanoelectronics and particles and waves	Understand
CO2	Implement the wave particle duality behavior in nanotechnology	Apply
CO3	Acquire the electron transport properties in semiconductor	Analyze
CO4	Recognize the electron transport in nanostructures	Apply
CO5	Capture the various materials for nanoelectronics and Identify the basic types of semiconductor heterostructure	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	2	3	2
CO2	3	3	2	1	3	3
CO3	2	2	3	2	2	2
CO4	3	2	2	2	3	2
CO5	2	3	2	2	2	2

Assessment Pattern

Plaam'a Catagony	Continuous Assess	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	20
Apply	10	10	20
Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	10

				llege of Technology PNT 104- Nanoelect				
		P		h – Nano Science a		οαν		
_		Hours / W			Credit		laximum Ma	rks
Semester	L	T	P	Total hrs.	C	CA	ES	Total
	3	0	0	45	3	40	60	100
Objective(s)	•	To provid To familia To familia techniqu	e an overvie trize learner trize the leat es	to understand basic s ew of the electron trans is with the basics of n rners with the proces ners to understand va	nsport in ser naterials in n sing growth	miconducto nanoelectro fabrication	ors and nanos onics and measur	ement
Course Outcomes	1. Lea 2. Imp 3. Acc 4. Rea 5. Ca	arn an em- plement th quire the e cognize th pture the v	erging idea e wave part electron tran e electron t	he students will be a of nanoelectronics ar ticle duality behavior sport properties in se ransport in nanostruc erials for nanoelectro ructure.	nd particles a in nanotechi emiconducto etures.	nology r.		
decide the nu	mber of h	nours for e	each unit de	e syllabus are only inc pending upon the co d against each unit in	ncepts and o	depth. Que		
	v, Classic wards Oh	al free ele		r, Sommerfeld theory, Resistor: Conductance				
Diode – V-I (or – Type Character alysis of a	es – Drift a istics of a a diode – I	Diode – Di Breakdown	n Carriers – P-N Junc ode specifications – diodes: Avalanche & sting	Diode resist	ance &am	p; Capacitan	ce – 🛛 [9
CC Configura	on Trans ations, Fie	istor (BJT) eld Effect): Constructi Transistor (itors * ionTypes of Opera FET) – Junction Fielo s – Effect of Temper	d Effect Trar	nsistor (JFI	ET): Construe	ction [9
Electrons in neterojunctio	gth scales quantum n, Contro	s of the el wells: Sir l of charge	ectrons in sengle modula transfer, E	olids, Statistics of the ation-doped heteroju lectron transport in q	nctions, Nur	nerical and	alysis of a si	
properties ar devices - gas	ectrics - F nd integra	Ferroelectr ation - ca e FETs - I	ic random a lorimetric se resistive ser	** access memory - Fe- ensors - electrochen niconductor gas sens tor sensor array.	nical cells -	surface a	nd bulk acor - identificatio	ustic [9 on of
							Tota	al hours:
			oelectronics	Editors: Fahrner, Wo	olfgang (Ed.)) Springer-	Verlag Berlin	1
	ir V.Mitin.	.Viatchesla	av A.Kochel	lap.Michel A Stroscio	, "Introductio	on to Nano	electronics",	Cambridg
2. Viadim Univers	sity press			Publisher: Neha Pu	ublighere 8 F	Netributoro	2010	

*SDG:8- Protective employment

Passed in BoS Meeting held on 22/11/2023 Approved in Academic Council Meeting held on 23/12/2023

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	Basics of Nano electronics	
1.1	Electrons flow	1
1.2	Classical free electron theory	1
1.3	Sommerfeld theory	1
1.4	The quantum of conductance	1
1.5	Coulomb blockade	1
1.6	Towards Ohm's law	1
1.7	The Elastic Resistor	1
1.8	Conductance of an Elastic Resistor	1
1.9	Elastic Resistor- Heat dissipation	1
2	Semiconductor Diodes	
2.1	Types of Semiconductor	1
2.2	Drift and Diffusion Carriers	1
2.3	P-N Junction Diode: Ideal Diode & Practical Diode	1
2.4	V-I Characteristics of a Diode	1
2.5	Diode resistance & Capacitance	1
2.6	Load line analysis of a diode	1
2.7	Breakdown diodes: Avalanche & Zener diodes	1
2.8	Varactor diodes and Tunnel Diodes	1
2.9	Schottky Diodes Diode Testing	1
3	Bipolar Junction and Field Effect Transistors	
3.1	Bipolar Junction Transistor (BJT): Construction	1
3.2	Types of Operation	1
3.3	I/O Characteristics of CE Configurations	1
3.4	I/O Characteristics of CB and CC Configurations	1
3.5	Junction Field Effect Transistor (JFET): Construction	1
3.6	principle of operation	1
3.7	Characteristic Curves	1
3.8	Effect of Temperature on JFET parameters	1
3.9	MOSFET	1
4	Electrons transport in low-dimensional structures	
4.1	Time and length scales of the electrons in solids	1
4.2	Statistics of the electrons in solids	1
4.3	Statistics of the electrons in nanostructures	1
4.4	Electrons in quantum wells	1
4.5	Single modulation-doped hetero junctions	1
4.6	Numerical analysis of a single hetero junction	1
4.7	Control of charge transfer	1
4.8	Electron transport in quantum wires	1
4.9	Electron transport in quantum dots	1

5	Applications of Nano electronics Devices	
5.1	Nano ferroelectrics	1
5.2	Ferroelectric random access memory - Fe-RAM circuit design	1
5.3	Ferroelectric thin film properties and integration	1
5.4	Calorimetric sensors - electrochemical cells	1
5.5	Surface and bulk acoustic devices	1
5.6	Gas sensitive FETs - resistive semiconductor gas sensors	1
5.7	Electronic noses	1
5.8	Identification of hazardous solvents and gases	1
5.9	Semiconductor sensor array	1
	Total	45

Course Designers

1. Dr.T.Baranidharan - <u>baranidharan@ksrct.ac.in</u>

		Category	L	Т	Ρ	Credit
60 PNT 105	Nano Biotechnology	PC	3	0	0	3

Objective(s)

- To extend their knowledge of fundamentals of biology
- To recognize the basic knowledge of Nano biotechnology and DNA structures.
- To interpret the application of nanomaterials in biotechnology and acquire the knowledge about the DNA, proteins, amino acids, drug delivery, biomedicine etc.,

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able

CO1	To know about the basic concept of biology of cell functions and system	Remember, Understand, Apply
CO2	Overview of different types of devices used in interphase system	Remember, Understand, Aanalyze
CO3	Identify various protein based nanostructures and its uses	Remember, Understand, Analyze
CO4	Identify various DNA based nanostructures and its uses	Remember, Understand, Apply
CO5	Understand the properties and applications of nano biomaterials	Remember, Understand, Apply

COURSE NAME	<u> </u>	PO					PSO			
	CO	1	2	3	4	5	6	1	2	3
	CO1	3	3	1	3	2	3	3	1	3
	CO2	2	2	2	2	3	2	3	1	3
Nano Biotechnology	CO3	3	3	2	2	2	3	3	3	3
	CO4	2	3	3	2	2	2	3	1	3
	CO5	3	3	2	1	3	2	3	2	3

Mapping with Programme Outcomes

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

Assessment Pattern

Bloom's Category		sessment Tests irks)	End Semester Examination (Marks)
	1 2		
Remember	10	10	20
Understand	10	10	30
Apply	10	10	20
Analyze	10	10	10
Evaluate	10	0	10
Create	10	0	10

K.S.Rangasamy College of Technology – Autonomous R2022											
60 PNT 105- Nano Biotechnology											
M.Tech – Nano Science and Technology											
Semester	Hours/Week			Credit	Maximum Marks						
	L	Т	Р	Total hrs.	i otal nrs.	Total hrs.	Total hrs.	С	СА	ES	Total
I	3	0	0	45	3	40	60	100			
BIOLOGY OF CELL AND CELL FUNCTIONS*											

Introduction to biological systems – Types of cells – cellular components –astrocytes-oligodendroglia-[9] fibroblasts-cell proliferation and differentaiton- cell division-pluripotency and totipotency-differentiated cells and cancer cells-sub cellular components-cell communication and cell signaling.

INTERPHASE SYSTEMS*

Interphase systems of devices for medical implants - nano-biometrics - introduction - lipids as nano-[9] bricks and mortar: self assembled nanolayers - nano analytical.

PROTEIN BASED NANOSTRUCTURES*

Nanocircuitry S- layer Protein- structure -chemistry -assembly - Protein nanostructured building blocks and templates - proteins as transducers and amplifiers of biomolecular recognition events -[9] nanobioelectronic devices and polymer nanocontainers - microbial production of inorganic nanoparticles - magnetosomes.

DNA BASED NANOSTRUCTURES*

DNA based nanostructures -fabrication-topographic and electrostatic properties of DNA and proteins [9] - hybrid conjugates of gold nanoparticles - DNA oligomers - Applications of DNA molecules in nano mechanics and computing.

APPLICATIONS ** Metal nanoparticles and nucleic acid and protein based recognition groups - application in optical [9] detection methods - nanotechnology in agriculture - fertilizers and pesticides - natural nanocomposites - silica nanoparticles in maize growth. Total Hours 45 Text Book(s): David I. Bainbridge, "Intellectual Property", Longman, 9th Edition, 2012. 1. Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods", Tata McGraw Hill Education, 11e (2012). 2 Reference(s): CM, Niemeyer, C.A. Mirkin, "Nano biotechnology: Concepts, Applications and Perspectives", Wiley -1. VCH, T. Pradeep, "Nano: The Essentials", McGraw – Hill education, 2007. 2. Challa, S.S.R. Kumar, Josef Hormes, CarolaLeuschaer,"Nanofabrication Towards Biomedical 3. Applications, Techniques, Tools, Applications and Impact", Wiley - VCH, 2005. Nicholas A. Kotov, "Nanoparticle Assemblies and Superstructures", CRC, 2006. 4.

*SDG:4- Quality Education and opportunities for all

**SDG:2- Sustainable agriculture

Course Content and Lecture Schedule

S. No.	Topics	No. of hours
1.0	BIOLOGY OF CELL AND CELL FUNCTIONS	·
1.1	Introduction to biological systems.	1
1.2	Types of cells – cellular components	1
1.3	astrocytes-oligodendroglia-fibroblasts	1
1.4	cell proliferation and differentaiton- cell division	1
1.5	pluripotency and totipotency	1
1.6	differentiated cells and cancer cells-sub cellular components-	2
1.7	Cell communication and cell signaling	2
2.0	INTERPHASE SYSTEMS	
2.1	Interphase systems of devices for medical implants	2
2.2	Nano-biometrics	1
2.3	Lipids as nano-bricks and mortar	2
2.4	Self assembled nanolayers	2
2.5	Nano analytical methods	2
3.0	PROTEIN BASED NANOSTRUCTURES	
3.1	Protein based nanostructures building blocks	1
3.2	Protein based templates	2
3.3	Proteins as transducers and amplifiers	1
3.4	Biomolecular recognition events	1
3.5	Nanobioelectronic devices	1
3.6	Polymer nanocontainers	1
3.7	Microbial production of inorganic nanoparticles	1
3.8	Magnetosomes	1
4.0	DNA BASED NANOSTRUCTURES	
4.1	DNA based nanostructures	1
4.2	Topographic and electrostatic properties of DNA	1
4.3	Properties of proteins	1

	Total	45			
5.7	Silica nanoparticles in maize growth.	1			
5.6	Natural nanocomposites	2			
5.5	Fertilizers and pesticides	1			
5.4	Nanotechnology in agriculture	1			
5.3	Application in optical detection methods	1			
5.2	Nucleic acid and protein based recognition groups	2			
5.1	Metal nanoparticles	1			
5.0	APPLICATIONS				
4.7	DNA in computing				
4.6	Use of DNA molecules in nanomechanics				
4.5	DNA oligomers	1			
4.4	Hybrid conjugates of gold nanoparticles	2			

Course Designer

Dr.B. Kalpana – kalpana@ksrct.ac.in

	English for Research Paper Writing	Category	L	Т	Ρ	Credit	
60 PAC 001		AC	2	0	0	0	
Objective							

Objective

- Teach how to improve writing skills and level of readability
- Tell about what to write in each section
- Summarize the skills needed when writing a Title
- Infer the skills needed when writing the Conclusion
- Ensure the quality of paper at very first-time submission

Prerequisite

NIL

Course Outcomes

On the success full completion of the course, students will be able to

	·
CO1	Understand that how to improve your writing skills and level of readability
CO2	Learn about what to write in each section
CO3	Understand the skills needed when writing a Title
CO4	Understand the skills needed when writing the Conclusion
CO5	Ensure the good quality of paper at very first-time submission

Assessment Pattern

Bloom's Category	Continuous Assessment Tests (Marks)					
Bloom's Calegory	1	2				
Remember	10	10				
Understand	30	30				
Apply	30	30				
Analyse	30	30				
Evaluate	0	0				
Create	0	0				

BoS Chairman

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	1	2	3	2
CO2	2	1	1	1	2	3
CO3	3	2	1	1	2	2
CO4	3	2	1	1	1	2
CO5	1	2	2	1	1	2

					llege of Techr			22		
			60 PCA		lish for Resea		Writing*			
			Hours		mon to all Bra	ncnes Credit		Maximum	Mark	6
Sen	nester	L	T	P	Total hrs.	Credit	СА	ES		s Total
	1	2	0	0	30	0	100	-	100	otai
Plan	ning and	d Preparati	ch Paper V ion, Word se and Ren	Order, Bre	eaking up long lundancy, Avoid	g sentences ding Ambigu	, Structuring ity and Vague	Paragraphs ness	and	[6]
Clari		ho Did WI	hat, Highlig a Paper, Ab		r Findings, He roduction	edging and	Criticizing, P	araphrasing	and	[6]
Key neec	ded wher	needed w		on, skills ne	/ skills are need eeded when wi heck					[6]
Skill: whei	n writing	eded when the Discuss			skills needed v when writing th			skills are ne	eded	[6]
Usef	fication ful phrase nission		g Plagiarisn	n, how to e	nsure paper is a	as good as il	could possib	ly be the first	time	[6]
Toy	Book(s	\.						Total H	ours	30
1.		Wallwork, E	English for V	Writing Res	earch Papers,	Springer Nev	w York Dordre	echt Heidelbe	erg	
2	Day R I	How to Writ	e and Publi	ish a Scien	tific Paper, Car	nbridge Univ	versity Press 2	2006		
Refe	erence(s)):								
1.	Goldbo	rt R Writing	for Science	e, Yale Uni	versity Press (a	available on	Google Books	s) 2006		
2.	Highma	in N, Handl	book of Wri	ting for the	Mathematical S	Sciences, SI	AM. Highman	's book 1998		
3.	Phill Wi	lliams, Adv	anced Writi	ing skills fo	r students of Er	nglish, Rumi	an Publishers	, 2018		
4.	Sudhir	S. Pandhye	e, English G	Frammar an	d Writing Skills	, Notion Pre	ss, 2017.			

*SDG:4- Quality Education and opportunities for all

60	PNT	1P1
----	-----	-----

Advanced Nanomaterials Synthesis Laboratory

Category	L	Т	Ρ	Credit
PC	0	0	4	2

Objective

- To prepare the various nanoscale materials through defend synthesis approach
- To develop the new synthesis method for nanomaterials preparation
- To acquire the technical skills required to prepare the nanoparticles
- To gain experience handling of nanomaterials and maintenance
- To understand the characteristics of nanomaterials by effect of various synthesis method.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Classify the synthesis of nanomaterials with different chemical methods	Understand
CO2	Distinguish the synthesis of nanomaterials with different physical methods	Analyse
CO3	Acquire the characteristics of nanomaterials	Create
CO4	Compare salient feature of nanomaterials	Apply
CO5	Identify the best suitable method for nanomaterials production for required applications	Analyse

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	1	2	2
CO2	2	3	2	2	1	2
CO3	3	2	2	2	2	3
CO4	2	3	3	2	3	3
CO5	2	3	2	3	2	3

Assessment Pattern

Bloom's Category	Model lab Assess	Model lab Assessment (Marks)					
Bloom's Category	1	2	(Marks)				
Understand	0	0	10				
Apply	20	20	30				
Analyse	20	20	30				
Create	20	20	30				

				anomaterials anoscience a	-					
Compostor	Hours/Week Total hrs Cred						Credit Maximum Marks			
Semester	L	Т	Р	Total hrs.	С	С	E	Tota		
I	0	0	4	60	2	60	40	100		
 Prepa To syn To prepa Prepa Green Prepa Mass Prepa Prepa Prepa Prepa Prepa Prepa Prepa Synth 	ration of Sid othesis the of epare the m ration of ma synthesis of ration of bio production of ration of na ration of Po igation of ar ration of Pe esis of ZnO	D ₂ nanoparti different size etal nanopa agnetitic nan of Cu/SiO ₂ /A o nanocomp of Al ₂ O ₃ -ZrC no bioactive lymeric Nan ntimicrobial rovskite Nan nanostructu	icles from i e of CuO n rticles (Ag/ oparticles g nanopar osites (TiC)2 nanocon glass (SiC ofibers (P' studies on noparticles ures by the	ticles (TiO ₂ /Zn its bulk SiO ₂ th anoparticles by /Au) through C (Fe ₂ O ₃ /Ni/Fe ₂ rticles by Extra 0 ₂ -SiO ₂) throug nposite form n D ₂ /CaO/P ₂ O ₅)/I VA/MgO, TiO ₂ / (Ag/TiO ₂ /ZnO s (BaTiO ₃ /CaM e microwave irr s Using Emulsi	arough mecha y Sono-chem hemical reduct TiO ₃) using C action/Reducti h wet chemic atural mineral HAp) through hrough Elec) nanoparticle gTiO ₃) by soli adiation meth	nical attrition ical method ction method o-Precipitat on process al approach by hot air s Hydrotherr ctro spinning es. id state method	on (Planeta d tion metho n. Spray pyro mal methoo g process.	ary Ball m d. Iysis. d.		
b Manual :							0.1.0			
	is of Nanon	naterials Lab	poratory M	anual", Depart	ment of NST,	KSRCT, 2	018			
eference(s):	Morritt Da	on and Cal	tlo "Instrur	mental Method	c of Analysis"			2 Now		
vvillard.	IVIETIIL, DE	an. anu sei	ue mstrur	nemai wemod	s of Analysis	, 000 208	ວຂບເວເະ	5 INEW		

*SDG:4- Quality Education and opportunities for all

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

60 DNT 400	None Bistochnology Loberstery	Category	L	т	Р	Credit
60 PNT 1P2	Nano Biotechnology Laboratory	PC	0	0	4	2

Objective

- To understand the experimental component in the manipulation of bio molecules and nanoparticles.
- To demonstrate the release of drug from nanoparticles
- To learn the Practice the animal tissue culture media preparation and culture inoculation
- To learn the viability testing of animal cells treated with nanoparticles using Haemocytometer
- To learn the knowledge about the Practice of study of invitro bioactivity of natural/synthetic nanoparticles using simulated body fluid.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Demonstrate the bacterial inoculation and cultivation	Understand
CO2	Evaluate the antibacterial study using nanoparticles	Evaluate
CO3	Practice the antibacterial study using nanoparticles by turbidometric method	Apply
CO4	Analysis the antibacterial study using nanoparticles by using cottion fabrics	Analyze
CO5	Familiar about the drug encapsulation efficiency in nanoparticles	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	1	2	1
CO2	2	3	3	2	1	1
CO3	3	2	2	2	1	3
CO4	3	2	3	2	3	3
CO5	2	3	2	3	2	1

Assessment Pattern

Bloom's Category		sessment Tests rks)	End Semester Examination (Marks)
	1	2	
Remember	10	10	20
Understand	10	10	30
Apply	10	10	20
Analyze	10	10	10
Evaluate	10	10	10
Create	10	10	10

		K.S.Rang	gasamy C	ollege of	Technology -	Autonomous	Regulation	on	
						gy Laborator			
		T			noscience a	nd Technolog			
Se	mester	Ho	ours/Weel		Total hrs.	Credit		aximum N	1
Jennester	L	Т	Р		С	C	E	Total	
		0	0	4	60	2	60	40	100
	1. Prepara	ation of cultu	re media	and Bacte	erial inoculation	on			
:	2. Screeni	ngofantibac	terialprop	ertyofnatu	ral/syntheticn	anoparticlesb	yMullerHi	ntonAgarp	olate
	methoo	1							
	 Screeni method 	0	algrowthin	hibitoryac	tivityofnatural	l/syntheticnan	oparticles	byTurbido	metric
	4. Determ	ination of ar	tibacteria	activity o	f nanoparticle	es coated cott	on fabrics		
4	5. Demon	stration of d	rug encap	sulation e	fficiency				
	6. Determ	ination of St	ability of r	atural/syr	nthetic nanopa	articles			
	7. Drug re	lease studie	s from na	noparticle	s at Physiolo	gical conditior	าร		
1	8. Animal	tissue cultur	e media p	reparatio	n and culture	inoculation			
9	9. Viability	testing of a	nimal cells	s treated v	with nanopart	icles using Ha	aemocytor	neter	
	10. Study o	of <i>in vitro</i> bio	activity of	natural/s	ynthetic nano	particles using	g simulate	d body flu	id
Lab N	Manual :								
1.	"Nanob	iotechnology	/ Lab Man	ual", Depa	rtment of Nan	o Science and	Technolo	gy, KSRCT	Г.
Refer	rence(s):								
1.	VCH,20	CM, Niemeyer, C.A. Mirkin, "Nanobiotechnology: Concepts, Applications and Perspectives", Wiley – VCH,2004.							
2.						er,"Nanofabrica			edical
3.						oact", Wiley – \ perstructures",			
J.	NICHUR	a_{3} π . Notov,	Tanopart				0110, 200	0	

*SDG:8- productive employment and decent work for all

Course Designer

Mr.R.Mohanraj (mohanrajr@ksrct.ac.in)

60 PNT 201	Advanced Characterisation	Category	L	Т	Ρ	Credit
00 PN1 201	Techniques	PC	3	0	0	3

Objective

- To analysis the relative methods of various characterisation techniques.
- Acquire the basic knowledge about the different characterization techniques.
- Study the application of scanning probe microscopy.
- Acquire the knowledge of various nanoscale materials through characterization techniques.
- Understand the role of mechanical characterization for materials properties analysis.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Distinguish the various microscopy Techniques.	Remember
CO2	Enumerate the characterization parameters of Scanning Probe Microscopy.	Analyse
CO3	Examine the principles of different types of Spectroscopic techniques.	Analyse
CO4	Manipulate the nanomaterials in mechanical characterization.	Apply
CO5	Analyse the types of structural parameters in characterization techniques.	Analyse

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	2	2	1
CO2	2	3	2	3	3	2
CO3	3	2	2	3	2	3
CO4	2	2	3	2	3	2
CO5	3	3	2	3	3	3

Assessment Pattern

Bloom's Category	Continuous Assessm	End Sem Examination	
BIOOIII'S Calegoly	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	30
Evaluate	10	10	10
Create	10	10	10

	K.S.R			Technology			tion	
				ed Character		•		
Department of Nanoscience and Technology Semester Hours/Week Credit Maximum Mark								
Semester			Р	Total hrs.	Creat	C	TT	Total
	_	<u>т</u>	-			E		
II MICROSCO	3	0	0	45	3	40	60	100
Optical mici – Transmi Scanning t	roscopy – Co ssion electro :unneling ele	on micros ectron mic	scopy-High croscopy –	ectron Microsc resolution Tr Image collec by – In-situ me	ansmission ction in ele	Electron r ectron micro	nicrocopy-	[9]
Scanning F probe lithog spectromet	graphy – Sc ry-Scanning t	copy – At anning ne	omic manipu ar field optic	ulations – Ato cal microscop oscopy.			-	[9]
spectroscop – Dynamic Differential	orption and o by – Raman s Light Scatteri Scanning Ca	pectrosco ng (DLS) lorimetry (py X-ray pho – NMR Spec DSC) – Ther	r – Basics - A otoelectron spe otroscopy – Th rmo mechanic	ectroscopy - ermo gravin	- Brillouin sp netric Analys	ectroscopy	[9]
Modulus an – Abrasion – Nano trib	and wear res	ng capabil istance – S tribometr	lity of nano re Super plastic	egion/ compre ity – Nano Ind Force apparat	entation-Sir	ngle point – I	Multipoint.	[9]
X- ray diffra macromole UV-PL-Pho	cular crystallo toluminescer	rer formula ography us ice - Therr	a – Rietveld r sing synchrot mo luminesce	efinement usir ron radiation - ence – X-ray a FS) – Electron	 electron a absorption F 	nd neutron o	diffraction – e (XAFS) –	[9]
						Т	otal Hours	45
Reference(
				McGraw Hill,				
A Mick	Wilson, Kam	aliKannan	gara, Geoff S	Introduction to Smith, Michelle es", Overseas	e Simmons,	BurkarRagu		
	rd, Merritt, De			al Methods of			DISTS New	Delhi

*SDG:8- productive employment and decent work for all

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	MICROSCOPY	
1.1	Optical microscopy	1
1.2	Confocal microscopy - Electron Microscopy	1
1.3	Scanning electron microscopy	1
1.4	Transmission electron microscopy	1
1.5	High resolution Transmission Electron microcopy	1
1.6	Scanning tunneling electron microscopy	1

		-
1.7	Image collection in electron microscopes	1
1.8	Environmental transmission electron microscopy	1
1.9	In-situ measurements	1
2	SCANNING PROBE MICROSCOPY	
2.1	Scanning Probe microscopy	1
2.2	Atomic manipulations	1
2.3	Atomic force microscopy	1
2.4	Scanning probe lithography	1
2.5	Scanning near field optical microscopy	1
2.6	Secondary ion mass (SIMS) spectrometry	1
2.7	Scanning tunneling electron microscopy	1
3	SPECTROSCOPY	
3.1	Optical absorption and emission spectroscopy	1
3.2	Basics - AAS – ICP OES	1
3.3	Infrared surface spectroscopy	1
	Raman spectroscopy X-ray photoelectron	
3.4	spectroscopy	1
3.5	Brillouin spectroscopy	1
3.6	Dynamic Light Scattering (DLS)	1
3.7	NMR Spectroscopy	1
3.8	Thermo gravimetric Analysis (TGA)	1
3.9	Differential Scanning Calorimetry (DSC)	1
3.10	Thermo mechanical Analysis (TMA).	1
4	MECHANICAL CHARACTERISATION	
	Modulus and load carrying capability of nano	
4.1	region/ compression	1
4.2	micro hardness	1
4.3	Fatigue	1
4.4	Abrasion and wear resistance	1
4.5	Super plasticity	1
4.6	Nano Indentation	1
4.7	Single point – Multipoint	1
4.8	Nano tribology.	1
4.9	Nano tribometre.	1
4.10	Surface Force apparatus	1
4.11	Quartz crystal microbalance	1
4.12	Friction force microscope	1
5	STRUCTURAL CHARACTERISATION	+ '
5.1	X- ray diffraction	2
5.2	Scherer formula	1
5.3	Rietveld refinement using FullProftexturing	1
	Micro strain macromolecular crystallography using	+ '
5.4	synchrotron radiation	1
5.5	electron and neutron diffraction	1
5.6	UV-PL-Photoluminescence	1
5.7	Thermo luminescence	1
5.8	X-ray absorption Fine Structure (XAFS)	1
5.9	Extended X- ray absorption fine structure (EXAFS)	1
	Electron spectroscopy for chemical Analysis	
5.10		1
	(ESCA). Total Hours	45
		40

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

60 DNT 202	Nano Photonics and its	Category	L	т	Р	Credit
60 PNT 202	Applications	PC	3	0	0	3

Objective

- Impart the knowledge about the photon technology of nano structured materials.
- To understand the basic ideas about the photonics and microscopy treatment.
- To learn the next generation nanophotonic technologies.
- To analysis nanophotonic applications in biotechnology
- To Learn the various photonic applications of nanomaterials

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recall basic ideas and fundamentals of nano photonics	Remember
CO2	Acquire the knowledge about Confinement of Photons and Electrons	Apply
CO3	Analyze the Photonic Crystals and Fibers the nanolithography techniques	Analyze
CO4	Apply photonic technique into biosensing.	Apply
CO5	Classify the applications of photonics in various filed.	Analyze

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern

Bloom's Category	Continuous Assessm	End Sem Examination		
	1	2	(Marks)	
Remember	10	10	10	
Understand	10	10	10	
Apply	10	10	30	
Analyze	10	10	30	
Evaluate	10	10	20	
Create	10	10	0	

	K.S.R	angasam	y College of	Technology	- Autonom	ous Regula	ation		
				Photonics ar					
		Depa	artment of N	anoscience a	and Techno	ology			
Semester	н	Hours/Week		Total hrs.	Credit	М	Maximum Marks		
Semester	L	Т	Р	Total firs.	С	С	E	Total	
II	3	0	0	45	3	40	60	100	
Trends in	n, Photonics, Nanophotoni	cs, Oppo	ortunities for	Basic Rese	arch and	Developme		[9]	
NANOPHO Photons al Photons al Nanoscopi Interaction Cooperativ	ies, scope of r DTONICS FOU ad Electrons, S ad Electrons. N c Localizatior Dynamics, N e Emission.	JNDATIO Similarities Nanoscale N. Nanosc lew Coop	N s and Differer optical Inter cale Confine perative Trans	nces - Free-Sp ractions - Axia ment of Elec	pace Propag I Nanoscop stronic Inter	gation - Cor ic Localizati ractions -	on - Lateral Nanoscopic	[9]	
Photonic C	s of nanophot Crystals and F d glasses - N aterials.	ibers-Plas	smonics – Me			•		[9]	
Near-Field Semicondu	DTONICS in B Bioimaging, Ictor Quantun nofiber Senso	Nanopa n Dots fo	articles for or Bioimaging	g, Biosensing	- Photonic	c Crystal B		[9]	
APPLICA Quantum-(TIONS * Confined Lase (SMOLED)	ers, optica	al switching -	Organic Light	Emitting D	Diodes (OLI	EDs): small	[9]	
						Т	otal Hours	45	
Text Book	(s):								
1.Para2.Serg	s N. Prasad, " ey V. Gapone								
Reference	()	T A .		M/III.i		4 1 1	- 4		
	raham Smith, on, John Wille			Wilkins, "Opti	cs and Pho	tonics: An li	ntroduction", s	second	
2. Con 3 Mar	nelly, Michael J. Madou Fu onCRC Press	J. "Semic ndamenta	onductor Opt					8156-7.	
	R. Fahrner "Na		logy and Nan	oelectronics"	Publisher [.] N	Jeha Publis	hers & Distrib	utors	

*SDG:8- productive employment and decent work for all

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	INTRODUCTION	
1.1	Scope and nature of Photonics	1
1.2	Nanophotonics	1
1.3	Frontierin Nanotechnology	1
1.4	Impact of Nanophotonics	1
1.5	Trends in Nanophotonics	1

1.6	Opportunities for Basic Research and Development	1
1.7	scope of nanophotonics	1
1.8	Electron tunneling	1
1.9	Photon tunneling	1
2	NANOPHOTONICS FOUNDATION	
2.1	Photons and Electrons	1
	Similarities and Differences, Free-Space	
2.2	Propagation	1
2.3	Confinement of Photons and Electrons	1
2.4	Nanoscale Optical Interactions	1
	Axial Nanoscopic Localization - Lateral	4
2.5	Nanoscopic Localization	1
0.0	Nanoscale Confinement of Electronic	4
2.6	Interactions	1
2.7	Nanoscopic Interaction Dynamics	1
2.8	New Cooperative Transitions	1
	Nanoscale Electronic Energy Transfer,	4
2.9	Cooperative Emission	1
2	PROPERTIES OF NANOPHOTONIC	
3	MATERIALS	
3.1	Photonic Crystals	1
3.2	Fibers-Plasmonics	1
3.3	Nanocomposite	1
3.4	Metamaterials Structures - Nanocomposite	1
3.5	Rare-earth-doped glasses	1
3.6	Nanostructured Multiphasic Compostites	1
	Nanostructured Multiphasic Compostites	4
3.7	properties	1
3.8	Photonic band gap materials	1
3.9	Organic materials	1
4	NANO STRUCTURE DEVICES	
4.1	Near-Field Bioimaging	1
4.2	Nanoparticles for Optical Diagnostics	1
4.3	Nanoparticles for Targeted Therapy	1
4.4	Bio imaging	1
4 5	Semiconductor Quantum Dots for Bio	4
4.5	imaging	1
4.6	Biosensing - Photonic Crystal Biosensors	1
4.7	Optical Nanofiber Sensors	1
4.8	Nanoclinics for Optical Diagnostics	1
4.9	Targeted Therapy	1
5	APPLICATION	
5.1	Quantum-Confined Lasers	2
5.2	Optical switching	1
5.3	Organic Light Emitting Diodes (OLEDs)	1
5.4	Small molecule (SMOLED)	1
5.5	Polymeric (PLED)	1
5.6	Display technology	2
5.7	Lightingand chip-to-chip interconnects	2
	Total	45
·		

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

60 PNT 203	Nanolithography and Nanofabrication

Category	L	Т	Р	Credit
PC	3	0	0	3

- To knowledge about lithography
- To know about etching method
- To analyze the process of lithography technique
- To discuss the printing and soft stamping
- To apply the lithography in nanoscale

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the emerging ideas of lithography	Remember
CO2	To classify the lithography types	Apply
CO3	Describe the nanolithography techniques	Analyze
CO4	To analyze process of lithography technique	Apply
CO5	Identify the advantage of lithography application	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern

Bloom's Catagony	Continuous Assess	sment Tests (Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	30
Evaluate	10	10	10
Create	10	10	10

	N.O.N			f Technology lithography ar				
				Nanoscience a				
	F	lours/Wee			Credit		aximum Mar	ks
Semester	L	Т	Р	Total hrs.	С	С	E	Total
	3	0	0	45	3	40	60	100
Principle of negative pl Chemical p	noto resistsE	Exposure a	and Develo - The mod	nography –Pre ping - Etching lern process–	g-Photoresis	t Removal-	Printing -	[9]
Optical lith Optical lith systems - U Lithography masks – X	ography * ography – Li Jltraviolet lith -Optical Inte ray sources -	ight source ography -N rferometric -holograph	es – Photo Mask less O c Lithograph iic lithograph	mask and alig ptical Projectio iy- X ray Litho iy.	n Lithograp	hy -Extreme	Ultraviolet	[9]
lon beam lit Masked ion – Raster so	beam lithogr can and vect	Focused ion aphy – Ion tor scan –	n beam – Po projection li Electron pr	pint sources of ithography - Ele oximity / Proje applications.	ectron lithog	raphy – Eleo	ctron optics	[9]
Nanoimprin Nanoimprin Nanoimprin Lithography - Principle -	nt and Soft I t Lithography t-UV-Soft Lit /-Stereo -litho Materials - A	ithograph / - Hot Em hography ography - N Application	y * bossing - Pr - Advantage Vanoscale 3	ocess - Types es - Molding-P D shapes – NE	rinting with	Soft Stamp	os – Edge	[9]
Tools for na	raphy tools anolithograph atching – Res	iy - Molecu	•	ation by STM a	and AFM – I	Nano patteri	n synthesis	[9]
	-					Т	otal Hours	45
Reference((s):							
1 Tech Sprin 2 David	niques", ger, 2006. I G.Bucknall,			oelectronics – Patterning tecl				ess,
Springer, 2006.								

*SDG:8- productive employment and decent work for all

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	BASICS IN LITHOGRAPHY	
1.1	Principle of Lithographic Process	1
1.2	Mask for Lithography	1
1.3	Preparation - Photoresist - Positive and negative photo resists	1
1.4	Exposure and Developing	1

1.5 Etching - Photoresist Removal 1 1.6 Printing - Chemical process 1 1.7 Refinements - The modern process 1 1.8 Lithography in artistic medium 1 1.9 Nanometer design for electronic circuits. 1 2 OPTICAL LITHOGRAPHY 1 2.1 Optical lithography 1 2.2 Light sources 1 2.3 Photo mask and alignment 1 2.4 Resolution in projection systems 1 2.5 Ultraviolet lithography 1 2.6 Mask less Optical Projection Lithography - Kray 1 2.7 Optical Interferometric Lithography - X ray 1 2.8 Proximity printing - X ray masks - X ray 1 3.0 NAND ELECTRONBEAM 1 1.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron 1 </th <th></th> <th></th> <th></th>			
1.7 Refinements - The modern process 1 1.8 Lithography in artistic medium 1 1.9 Nanometer design for electronic circuits. 1 2 OPTICAL LITHOGRAPHY 1 2.1 Optical lithography 1 2.2 Light sources 1 2.3 Photo mask and alignment 1 2.4 Resolution in projection systems 1 2.5 Ultraviolet lithography 1 2.6 Mask less Optical Projection Lithography - 1 2.7 Optical Interferometric Lithography - X ray 1 2.8 Proximity printing - X ray masks - X ray 1 3.0 ION AND ELECTRONBEAM 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron 1 3.5 scan 1 1 3.6 Electron proximity / Projection printing 1 3.7 Electron seasts 1	1.5	Etching - Photoresist Removal	1
1.8 Lithography in artistic medium 1 1.9 Nanometer design for electronic circuits. 1 2 OPTICAL LITHOGRAPHY 1 2.1 Optical lithography 1 2.2 Light sources 1 2.3 Photo mask and alignment 1 2.4 Resolution in projection systems 1 2.5 Ultraviolet lithography 1 2.6 Mask less Optical Projection Lithography - Extreme Ultraviolet Lithography 1 2.7 Optical Interferometric Lithography - X ray Lithography 1 2.8 Proximity printing - X ray masks - X ray sources 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron scan 1 3.5 Electron optics - Raster scan and vector scan 1 3.6 Electron resists 1 3.7 Electron sesses 1 3.8 Photon based Nanolithography 1 3.9 Electron se	_		1
1.9 Nanometer design for electronic circuits. 1 2 OPTICAL LITHOGRAPHY 1 2.1 Optical lithography 1 2.2 Light sources 1 2.3 Photo mask and alignment 1 2.4 Resolution in projection systems 1 2.5 Ultraviolet lithography 1 2.6 Mask less Optical Projection Lithography - Extreme Ultraviolet Lithography 1 2.7 Optical Interferometric Lithography - X ray Lithography 1 2.8 Proximity printing - X ray masks - X ray sources 1 3.1 Ion AND ELECTRONBEAM LITHOGRAPHY 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron lithography 1 3.5 Electron optics - Raster scan and vector scan 1 3.6 Electron proximity / Projection printing 1 3.7 Electron beam applications 1 4 NANOIMPRINT AND SOFT LITHOGRAPHY 1			1
2 OPTICAL LITHOGRAPHY 2.1 Optical lithography 1 2.2 Light sources 1 2.3 Photo mask and alignment 1 2.4 Resolution in projection systems 1 2.5 Ultraviolet lithography 1 2.6 Mask less Optical Projection Lithography - Extreme Ultraviolet Lithography 1 2.7 Optical Interferometric Lithography - X ray Lithography 1 2.8 Proximity printing - X ray masks - X ray sources 1 3.1 Ion beam lithography 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.4 Ion projection lithography - Electron lithography 1 3.5 Electron optics - Raster scan and vector scan 1 3.6 Electron resists 1 3.7 Electron resists 1 3.8 Photon based Nanolithography 1 3.9 Electron resists 1 3.9 Electron resists 1 3.9 Electron beam applications 1 4 </td <td></td> <td></td> <td>1</td>			1
2.1 Optical lithography 1 2.2 Light sources 1 2.3 Photo mask and alignment 1 2.4 Resolution in projection systems 1 2.5 Ultraviolet lithography 1 2.6 Extreme Ultraviolet Lithography - Extreme Ultraviolet Lithography - X ray Lithography 1 2.7 Optical Interferometric Lithography - X ray sources 1 2.8 Proximity printing - X ray masks - X ray sources 1 2.9 Holographic lithography 1 3.1 Ion AND ELECTRONBEAM LITHOGRAPHY 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron lithography 1 3.5 Electron optics - Raster scan and vector scan 1 3.6 Electron proximity / Projection printing 1 3.7 Electron beam applications 1 3.8 Photon based Nanolithography 1 3.9 Electron resists 1 <t< td=""><td>1.9</td><td></td><td>1</td></t<>	1.9		1
2.2 Light sources 1 2.3 Photo mask and alignment 1 2.4 Resolution in projection systems 1 2.5 Ultraviolet lithography 1 2.6 Mask less Optical Projection Lithography - Extreme Ultraviolet Lithography 1 2.6 Mask less Optical Projection Lithography - Extreme Ultraviolet Lithography 1 2.7 Optical Interferometric Lithography - X ray Lithography 1 2.8 Proximity printing - X ray masks - X ray sources 1 2.9 Holographic lithography 1 3.1 Ion AND ELECTRONBEAM LITHOGRAPHY 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron lithography 1 3.5 Electron proximity / Projection printing 1 3.6 Electron proximity / Projection printing 1 3.7 Electron beam applications 1 3.8 Photon based Nanolithography 1 4 NANOIMPRINT AND SOFT LITH		OPTICAL LITHOGRAPHY	
2.3 Photo mask and alignment 1 2.4 Resolution in projection systems 1 2.5 Ultraviolet lithography 1 2.6 Mask less Optical Projection Lithography - Extreme Ultraviolet Lithography 1 2.7 Optical Interferometric Lithography - X ray Lithography 1 2.7 Optical Interferometric Lithography - X ray sources 1 2.8 Proximity printing - X ray masks - X ray sources 1 3 ION AND ELECTRONBEAM LITHOGRAPHY 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.4 Ion projection lithography - Electron lithography 1 3.5 Electron optics - Raster scan and vector scan 1 3.6 Electron proximity / Projection printing 1 3.7 Electron proximity / Projection printing 1 3.8 Photon based Nanolithography 1 3.9 Electron beam applications 1 4 NANOIMPRINT AND SOFT LITHOGRAPHY 1 4.1 Nanoimprint Lithography - Advantages 1 4.2 Hot Embossing -		Optical lithography	1
2.4 Resolution in projection systems 1 2.5 Ultraviolet lithography 1 2.6 Mask less Optical Projection Lithography - Extreme Ultraviolet Lithography - X ray 1 2.7 Optical Interferometric Lithography - X ray 1 2.8 Proximity printing - X ray masks - X ray 1 2.9 Holographic lithography 1 2.9 Holographic lithography 1 3 ITHOGRAPHY 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron 1 1 Inthography 1 1 3.4 Ion projection proximity / Projection printing 1 3.5 Electron optics - Raster scan and vector scan 1 3.6 Electron proximity / Projection printing 1 3.7 Electron beam applications 1 4 NANOIMPRINT AND SOFT LITHOGRAPHY 4 4.1 Nanoimprint Lithography - Advantages 1			1
2.5 Ultraviolet lithography 1 2.6 Mask less Optical Projection Lithography - Extreme Ultraviolet Lithography 1 2.7 Optical Interferometric Lithography - X ray Lithography 1 2.8 Proximity printing - X ray masks - X ray sources 1 2.9 Holographic lithography 1 3 ION AND ELECTRONBEAM LITHOGRAPHY 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - lon column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron lithography 1 3.5 Electron optics - Raster scan and vector scan 1 3.6 Electron proximity / Projection printing 1 3.7 Electron beam applications 1 3.8 Photon based Nanolithography 1 3.9 Electron beam applications 1 4 NANOIMPRINT AND SOFT LITHOGRAPHY 1 4.1 Nanoimprint Lithography - Advantages 1 4.3 Benefits-Applications - Future of Nanoimprint 1 4.4 UV-Soft Lithography - Adva			-
2.6 Mask less Optical Projection Lithography - Extreme Ultraviolet Lithography 1 2.7 Optical Interferometric Lithography - X ray Lithography 1 2.8 Proximity printing - X ray masks - X ray sources 1 2.9 Holographic lithography 1 3 ION AND ELECTRONBEAM LITHOGRAPHY 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron scan 1 3.4 Ion projection lithography - Electron scan 1 3.5 Electron optics - Raster scan and vector scan 1 3.6 Electron proximity / Projection printing 1 3.7 Electron beam applications 1 3.8 Photon based Nanolithography 1 3.9 Electron beam applications 1 4 NANOIMPRINT AND SOFT LITHOGRAPHY 1 4.1 Nanoimprint Lithography - Advantages 1 4.3 Benefits-Applications - Future of Nanoimprint 1 4.4.3			
2.0Extreme Ultraviolet Lithography12.7Optical Interferometric Lithography - X ray Lithography12.8Proximity printing - X ray masks - X ray sources12.9Holographic lithography13ION AND ELECTRONBEAM LITHOGRAPHY13.1Ion beam lithography - Focused ion beam13.2Point sources of ion - Ion column13.3Beam writing - Masked ion beam lithography13.4Ion projection lithography - Electron lithography13.5Electron optics - Raster scan and vector scan13.6Electron roximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano	2.5		1
2.7 Optical Interferometric Lithography - X ray Lithography 1 2.8 Proximity printing - X ray masks - X ray sources 1 2.9 Holographic lithography 1 3 ION AND ELECTRONBEAM LITHOGRAPHY 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron lithography 1 3.5 Electron optics - Raster scan and vector scan 1 3.6 Electron proximity / Projection printing 1 3.8 Photon based Nanolithography 1 3.9 Electron beam applications 1 3.4 Nanoimprint Lithography 1 3.5 Electron beam applications 1 3.6 Electron beam applications 1 3.7 Electron beam applications 1 4 NANOIMPRINT AND SOFT LITHOGRAPHY 4 4.1 Nanoimprint Lithography - Advantages 1 4.3 Benefits-Applications - Future of Nanoimprint 1	2.6		1
2.7 Lithography 1 2.8 Proximity printing - X ray masks - X ray sources 1 2.9 Holographic lithography 1 3 ION AND ELECTRONBEAM LITHOGRAPHY 1 3.1 Ion beam lithography - Focused ion beam 1 3.2 Point sources of ion - Ion column 1 3.3 Beam writing - Masked ion beam lithography 1 3.4 Ion projection lithography - Electron lithography 1 3.5 Electron optics - Raster scan and vector scan 1 3.6 Electron proximity / Projection printing 1 3.7 Electron resists 1 3.8 Photon based Nanolithography 1 3.9 Electron beam applications 1 4 NANOIMPRINT AND SOFT LITHOGRAPHY 1 4.1 Nanoimprint Lithography 1 4.2 Hot Embossing - Process - Types 1 4.3 Benefits-Applications - Future of Nanoimprint 1 4.4 UV-Soft Lithography - Advantages 1 4.5 Molding-Printing with Soft Stamps 1 4.6 Edge Lithography - Prin	2.0		·
LithographyProximity printing - X ray masks - X ray sources12.8Proximity printing - X ray masks - X ray sources13ION AND ELECTRONBEAM LITHOGRAPHY13.1Ion beam lithography - Focused ion beam13.2Point sources of ion - Ion column13.3Beam writing - Masked ion beam lithography13.4Ion projection lithography - Electron lithography13.5Electron optics - Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stere - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by AFM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging la	27		1
2.0sources12.9Holographic lithography13ION AND ELECTRONBEAM LITHOGRAPHY13.1Ion beam lithography - Focused ion beam13.2Point sources of ion – Ion column13.3Beam writing – Masked ion beam lithography13.4Ion projection lithography - Electron lithography13.5Electron optics – Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Principle - Materials - Applications.15.1Tools for nanolithography14.3Molecular manipulation by STM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			·
Sources12.9Holographic lithography13ION AND ELECTRONBEAM LITHOGRAPHY13.1Ion beam lithography - Focused ion beam13.2Point sources of ion – Ion column13.3Beam writing – Masked ion beam lithography13.4Ion projection lithography - Electron lithography13.5Electron optics – Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY4.14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	2.8		1
3ION AND ELECTRONBEAM LITHOGRAPHY3.1Ion beam lithography - Focused ion beam13.2Point sources of ion – Ion column13.3Beam writing – Masked ion beam lithography13.4Ion projection lithography - Electron lithography13.5Electron optics – Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Nano scratching25.6Resist and imaging layers.2			
3LITHOGRAPHY3.1Ion beam lithography - Focused ion beam13.2Point sources of ion – Ion column13.3Beam writing – Masked ion beam lithography13.4Ion projection lithography - Electron lithography13.5Electron optics – Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron proximity / Projection printing13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography – Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Principle - Materials - Applications.14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.3Molecular manipulation by STM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	2.9		1
3.1Ion beam lithography - Focused ion beam13.2Point sources of ion – Ion column13.3Beam writing – Masked ion beam lithography13.4Ion projection lithography - Electron lithography13.5Electron optics – Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography – Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	3		
3.2Point sources of ion – Ion column13.3Beam writing – Masked ion beam lithography13.4Ion projection lithography - Electron lithography13.5Electron optics – Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	0.4		
3.3Beam writing – Masked ion beam lithography13.4Ion projection lithography - Electron lithography13.5Electron optics – Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography – Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			
3.4Ion projection lithography - Electron lithography13.5Electron optics - Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			-
3.4lithography13.5Electron optics – Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography – Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	3.3	0 01,	
3.5Electron optics – Raster scan and vector scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography – Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	3.4		1
3.5scan13.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography – Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.3Molecular manipulation by STM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			
3.6Electron proximity / Projection printing13.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY4.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	3.5		1
3.7Electron resists13.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.3Molecular manipulation by STM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	36		1
3.8Photon based Nanolithography13.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY4.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography – Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.3Molecular manipulation by STM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			
3.9Electron beam applications14NANOIMPRINT AND SOFT LITHOGRAPHY14.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography – Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.3Molecular manipulation by STM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			
4NANOIMPRINT AND SOFT LITHOGRAPHY4.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography – Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.3Molecular manipulation by STM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			-
4.1Nanoimprint Lithography14.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.3Molecular manipulation by STM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			
4.2Hot Embossing - Process - Types14.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.3Molecular manipulation by STM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	-		1
4.3Benefits-Applications - Future of Nanoimprint14.4UV-Soft Lithography - Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			1
4.4UV-Soft Lithography – Advantages14.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			1
4.5Molding-Printing with Soft Stamps14.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			1
4.6Edge Lithography - Stereo - lithography14.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			1
4.7Nanoscale 3D shapes14.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			1
4.8NEMS design14.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS5.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			1
4.9Dip-Pen Lithography - Principle - Materials - Applications.15NANOLITHOGRAPHY TOOLS15.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	4.8		1
4.9Applications.15NANOLITHOGRAPHY TOOLS5.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2			1
5.1Tools for nanolithography15.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	4.9	Applications.	
5.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	5		
5.2Molecular manipulation by STM15.3Molecular manipulation by AFM15.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	5.1	Tools for nanolithography	1
5.4Nano pattern synthesis25.5Nano scratching25.6Resist and imaging layers.2	5.2	Molecular manipulation by STM	1
5.5Nano scratching25.6Resist and imaging layers.2		Molecular manipulation by AFM	
5.6 Resist and imaging layers. 2	5.4		
	5.5		2
	5.6		2
		Total	45

Course Designer

Dr. S.Satheeskumar (satheeskumars@ksrct.ac.in)

60 PNT 204	Advanced Carbon Nanotubes	Category	L	Т	Р	Credit
60 PNT 204	and Applications	PC	3	0	0	3

- To understand the different formation of CNT.
- To learn the various synthesis methods and fabrication technology
- To study the structural and electronic characteristics of CNT
- To acquire knowledge of CNT functionalization mechanism.
- To gain the knowledge of CNT through spectroscopy characterize tools and its applications

Prerequisite

Basics of Carbon Nanotubes

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe Nano diamond particles and diamond like carbon films	Remember
CO2	Analyze the properties of carbon nanotubes	Analyze
CO3	Illustrate the synthesis of carbon nanotubes	Analyze
CO4	Explain the applications of carbon Nanotubes	Apply
CO5	Demonstrate the various applications of Carbon Nanotubes	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern

Bloom's Cotogony	Continuous Asses	End Sem Examination				
Bloom's Category	1	2	(Marks)			
Remember	10	10	10			
Understand	10	10	10			
Apply	10	10	20			
Analyze	10	10	30			
Evaluate	10	10	20			
Create	10	10	10			

		K.S.F	Rangasamy	/ College of	Technology	- Autonomo	ous Regulat	tion	
		60	PNT 204 -	Advanced	Carbon Nanc	tubes and	Application	S	
Department of Nanoscience and Technology									
Carro	otor	I	Hours/Wee	k	Total has	Credit	Ма	aximum Mark	S
Seme	ster	L	Т	Р	Total hrs	С	С	E	Total
II		3	0	0	45	3	40	60	100
CARB	ON NA	NOTUBE	S PROPER	TIES					
Carbo	n nanoti	ube (CNT)	, structure	of CNT, synt	hesis of CNT,	electronic, v	vibrational, n	nechanical	[9]
and op	otical pro	perties of	CNT; appl	ications of C	NT. fabricatio	n of Fullerer	ne (C60).		
CARB	ON NA	NOFILMS							
Diamo	nd-like	Carbon fil	ms (DLC),	classification	n of DLC, pro	perties and	applications	s of DLCs:	
nterna	al stres	s and a	dhesion,	coating mo	rphology, po	rosity and	diffusional	property,	[9]
DLC/g	raphite	transform	ation, Opti	cal propertie	s, electrical p	properties, r	nechanical	properties,	
chemi	cal resis	tance, trib	ological pro	operties; dep	osition techni	ques of DLC	c films.		
CNT F	UNCTIO	ONALIZA	TION						
Functio	onalizati	on of Ca	arbon Nano	otubes: cova	alent function	alization of	CNTs, nor	n covalent	[9]
unctio	onalizatio	on of CNT	s, modifica	tion of CNTs	via mechnoc	hemical read	ctions, electi	rochemical	[9]
deposi	ition, ele	ctroless c	leposition;	olasma activa	ation of CNTs				
SPEC	TORSC	OPIC PR	OPERTIES	OF CNT					
Spectr	oscopic	Propert	ies of Ca	arbon Nand	otubes-Ramar	n and Infr	ared Spec	troscopyof	[9]
					Spectroscop	by of Carbo	on Nanotuk	bes, ESR-	[9]
			s of Carbor	n Nanotubes.					
CNT A	PPLIC	TIONS *							
Lithiun					l cell applicati			, Chemical	[9]
Senso	rs app	lications	of CNTs	s. Compute	er applicatio	ns (Nano	chip), op	tical and	[9]
telecor	mmunica	ation appl	ications. Na	ano composit	tes, silicon Na	nowires			
							То	otal Hours	45
Text B	Book(s)								
1	Carbon	Nanotube	s: Propertie	es and Applic	cations-Micha	el J. O'Conn	ell Artech H	ouse Press,2	012.
2	Nanotuk	es and N	anowires-C	NR Rao and	I A Govindara	j RCS Publis	shing, 2013.		
3	Dar Djla	h- Amma	n-Jordan, "l	Book-Carbor	Nanotubes S	Synthesis an	d Applicatio	ns, ISBN: ISE	3N:9957
3	71-307-2	2. 2021.							
Refere	ence(s)								
1	Michael	J. O'Coni	nell, "Carbo	n Nanotubes	: Properties a	and Applicati	ions," CRC I	Press., 2010.	
2	Jiji Abra	ham, Sab	u Thomas,	Nandakuma	r Kalarikkal, "	Handbook o	f Carbon Na	notubes" Spi	ringer
Z	, Cham, 2	0000						•	-

*SDG:8- productive employment

Course Contents and Lecture Schedule

S.No		No. of
••	Торіс	Hours
1	CARBON NANOTUBES PROPERTIES	
1.1	Carbon nanotube (CNT)	1
1.2	Structure of CNT	1
1.3	Synthesis of CNT	1
1.4	Electronic properties	1
1.5	Vibrational properties	1
1.6	Mechanical properties of CNT	1
1.7	Optical properties of CNT	1
1.8	Applications of CNT	1

1.9	Fabrication of Fullerene (C60).	1
2	CARBON NANOFILMS	
2.1	Diamond-like Carbon films (DLC)	1
2.2	Classification of DLC	1
2.3	Properties of DLCs	1
2.4	Applications of DLCs	1
	Internal stress and adhesion, coating morphology,	-
2.5	porosity and diffusional property	1
2.6	DLC/graphite transformation	1
2.7	Optical properties, electrical properties, mechanical	1
2.7	properties, chemical resistance	Ĩ
2.0	Tribological properties; deposition techniques of DLC	4
2.8	films.	1
2.9	Deposition techniques of DLC films.	1
3	CNT FUNCTIONALIZATION	
3.1	Functionalization of Carbon Nanotubes	1
3.2	Covalent functionalization of CNTs	2
3.3	Non covalent functionalization of CNTs	2
3.4	modification of CNTs via mechnochemical reactions	1
3.5	Electrochemical deposition	1
3.6	Electroless deposition	1
3.7	Plasma activation of CNTs	1
4	SPECTORSCOPIC PROPERTIES OF CNT	
4.1	Spectroscopic Properties of Carbon Nanotubes	1
4.2	Raman Spectroscopy of Carbon Nanotubes	2
4.3	Infrared Spectroscopy of Carbon Nanotubes	1
4.4	Absorption Spectroscopy of Carbon Nanotubes	1
4.5	Emission Spectroscopy of Carbon Nanotubes	2
4.6	ESR-Spectroscopic Properties of Carbon Nanotubes	2
5	CNT APPLICATIONS	
5.1	Lithium & Hydrogen Battery	1
5.2	Lithium & Hydrogen adsorption & storages	1
5.3	Fuel cell applications	1
5.4	Energy storage	1
5.5	Chemical Sensors applications of CNTs	1
5.6	Computer applications (Nano chip)	1
5.7	Optical and telecommunication applications	1
5.8	Nano composites	1
5.9	Silicon Nanowires	1
	Total	45

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

60 PED 001 /		Category	L	Т	Ρ	Credit
60 PDB E26	Research Methodology and IPR	PC	3	0	0	3

Objective(s)

- To understand the principles of research process.
- To develop knowledge in analytical skills for collection of research data.
- To understand the procedure in the preparation of reports.
- To accomplish basic idea about the process involved in intellectual property rights.
- To enlighten the process of patent filing.

Pre-requisite

Nil

Course Outcomes

On the successful completion of the course, students will be able

CO1	To understand the research process and design.	Remember, Understand, Apply
CO2	To gain the knowledge about sources and collection of research data	Remember, Understand, Aanalyze
CO3	To understand the procedure of data analysis, preparation of reports and checking plagiarism	Remember, Understand, Analyze
CO4	To gain the knowledge on Trade mark and functions of UNESCO in IPR	Remember, Understand, Apply
CO5	To enlighten the benefits, E-filing and Examinations related to patents	Remember, Understand, Apply

Mapping with Programme Outcomes

COURSE NAME	со			Р	0				PSO	
COURSE NAME		1	2	3	4	5	6	1	2	3
Research	CO1	3	3	2	2	2	2	3	1	3
	CO2	3	3	2	2	2	2	3	1	3
Methodology and	CO3	3	3	2	2	2	2	3	1	3
IPR	CO4	3	3	2	2	2	2	3	1	3
	CO5	3	3	2	2	2	2	3	1	3

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

AssessmentPattern						
Bloom'sCategory	Continuous Ass (Mar		Model	End Semester Examination (Marks		
	1	2	Exam (Marks)			
Remember	10	10	20	30		
Understand	20	20	40	30		
Apply	30	30	40	30		
Analyse	0	0	0	10		
Evaluate	0	0	0	0		
Create	0	0	0	0		

BoS Chairman

Syllabus

K.S.Rangasamy College of Technology – Autonomous R2022									
	6	0 PED 001 /	/ 60 PDB E	26 - Research	Methodolo	ogy and IPR			
Common to all Branches									
Semes	ter	Hours/		Total hrs.	Credit	Maximum			
	3	T	P 0	45	C 3	CA 40	ES 60	Total 100	
	h Design	0	0	43	5	40	00	100	
Overview research of the Rig	of research of question, Quant of Medium ar	alitative resend Journal fo	arch, Obse	lse of Seconda ervation studies on, Translation	s, Experimer	nts and Surv		[9]	
Measure Data - Pr	eparing, Explo	urement Sca pring, examin		tionnaires and isplaying.	Instruments	s, Sampling	and methods.	[9]	
Overview Insights a		ite Analysis, sing written re	eports and	es testing and oral presentation				[9]	
Intellectual Property Rights Intellectual Property – The concept of IPR, Evolution and development of concept of IPR, IPR development process, Trade secrets, utility Models, IPR & Bio diversity, Role of WIPO and WTO in IPR establishments, Right of Property, Common rules of IPR practices, Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance.						[9]			
Specifica Revocati	tion, Types of	patent appli Assignmer	ication, pro	ent, Concept, ocess E-filling, I ces, Licensing	Examination	of patent, C	Grant of patent,	[9]	
							Total Hours	45	
Text Boo									
1. Davi	d I. Bainbridge	e, "Intellectua	al Property	", Longman, 9tl	n Edition, 20	12.			
	ducation. 11e		'amela S a	nd Sharma JK	, "Business	Research M	lethods", Tata I	McGraw	
	.,	oduction to Ir	ntellectual l	Property Rights	", CBS PUB	& DIST PV	T Limited, INDI	A, 2019.	
	erine J. Hol		ectual pro	operty: Patents	s, Tradema	rks, Copyri	ghts, Trade S	Secrets",	
			tthew Rodo	gers, "Patent se	earching: too	ols & techniq	ues", Wiley, 20	07	
^{4.} Univ	ersitv Press. 2	2010.					and Practice",		
5. Richa Publi	ard Stim, "Pa <u>shers, 2020.</u>	itent, Copyri					sk Reference"		
				ndia, Statutory Law and practic			arliament, "Prof	essional	

*SDG:4- Quality Education and opportunities for all

Course Content and Lecture Schedule

S. No.	Topics	No. of hours
1.0	Research Design	
1.1	Overview of research process and design	1
1.2	Use of Secondary and exploratory data to answer the research question	2
1.3	Qualitative research	1
1.4	Observation studies	1
1.5	Experiments and Surveys	1
1.6	Selection of the Right Medium and Journal for publication	2
1.7	Translation of Research	1
2.0	Data Collection and Sources	
2.1	Measurements, Measurement Scales	2
2.2	Questionnaires and Instruments	2
2.3	Sampling and methods	2
2.4	Data - Preparing, Exploring, examining and displaying	3
3.0	Data Analysis and Reporting	
3.1	Overview of Multivariate analysis	1
3.2	Hypotheses testing and Measures of Association	2
3.3	Presenting Insights	1
3.4	Findings using written reports and oral presentation	2
3.5	Checks for Plagiarism	1
3.6	Falsification	1
3.7	Fabrication, and Misrepresentation	1
4.0	Intellectual Property Rights	
4.1	Intellectual Property – The concept of IPR	1
4.2	Evolution and development of concept of IPR, IPR development process	2
4.3	Trade secrets, utility Models, IPR & Bio diversity	2
4.4	Role of WIPO and WTO in IPR establishments	1
4.5	Right of Property, Common rules of IPR practices	1
4.6	Types and Features of IPR Agreement, Trademark, Functions of UNESCO in IPR maintenance	2
5.0	Patents	
5.1	Patents – objectives and benefits of patent, Concept, features of patent	2
5.2	Inventive step, Specification, Types of patent application	2
5.3	Process E-filling, Examination of patent	1
5.4	Grant of patent, Revocation	1
5.5	Equitable Assignments, Licences, Licensing of related patents	2
5.6	Patent agents, Registration of patent agents	1

CourseDesigner

Dr.A.Murugesan - murugesana@ksrct.ac.in

		Category	L	Т	Ρ	Credit
60 PAC 002	Disaster Management	AC	2	0	0	0

- Summarize basics of disaster
- Explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
- Illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives.
- Describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
- Develop the strengths and weaknesses of disaster management approaches Teach how to improve writing skills and level of readability

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Ability to summarize basics of disaster
CO2	Ability to explain a critical understanding of key concepts in disaster risk reduction and
	humanitarian response.
CO3	Ability to illustrate disaster risk reduction and humanitarian response policy and practice
	from multiple perspectives.
CO4	Ability to describe an understanding of standards of humanitarian response and practical
	relevance in specific types of disasters and conflict situations.
CO5	Ability to develop the strengths and weaknesses of disaster management approaches

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	1
CO2	1	1	1	1	1	1
CO3	1	1	1	1	1	1
CO4	1	1	1	1	1	1
CO5	1	1	1	1	1	1

Assessment Pattern

Bloom's Category	Continuous Assessment Tests(Marks)				
Bloom's Category	1	2			
Remember	20	20			
Understand	20	20			
Apply	30	30			
Analyse	30	30			
Evaluate	0	0			
Create	0	0			

BoS Chairman

			n.3.		y College of To 02 – Disaster			131/2022			
					mmon to all Bi						
Seme	octo		Hours	Hours/Week Total hrs.		Credit		Maximum	Maximum Marks		
		L	Т	Р		C	CA	E		Γota	
I	-	2	0	0	3	0	100	-	100		
	ster:	Definition,		•	nce; Difference Types and Mag		zard and Dis	aster; Natura	l and	[6]	
Ecor Earth Aval	nomio hqua anch	c Damage kes, Volca es, Man-n	, Loss of H anisms, Cy nade disas	clones, Tsi ter: Nuclea	ds Animal Life, De unamis, Floods Ir Reactor Melto nics, War And C	, Droughts <i>A</i> down, Indus	And Famines	s, Landslides	And	[6]	
Stud Pron	ly of ne to	Seismic Z		s Prone to	Floods and Dro ith Special Refe					[6]	
Prep Appl	ared	ness: Moi on of Rem	nitoring of note Sensi		a Triggering a om Meteorolog					[6]	
Disa Situa	ster ation.	Techniqu	es of Risk	Assessmer	isaster Risk Red ht, Global Co-Oj t. Strategies for	peration in R				[6]	
								Total H	ours	30	
		ok(s):									
'.	Publi	cation Pvt.	Ltd., New	Delhi,2009				-			
2 I	Roya	I book Cor	ngh AK, "C npany,200		nagement in Inc	lia: Perspect	ives, issues	and strategie	s "'Ne	w	
Refe	erenc	;e(s):									
	Sahn 2001		et.al.," Dis	aster Mitiga	ation Experience	es and Refle	ctions", Prer	ntice Hall of Ir	ndia,		
1.	Subra	amanian R	,"Disaster	Manageme	nt", Vikas publis	shing Housin	g Pvt. Ltd., 2	2018.			
2. (Chu-l	nuaKuei, C	Christian N	Madu, Han	nt", Vikas publis dbook of Disast atural Disaster,	er Managem	nent Risk Re				

*SDG:6- Sustainable management

60 DNT 204	Advanced Characterisation	Category	L	т	Р	Credit
60 PNT 2P1	Laboratory	PC	0	0	4	2

- To practice characterization tools and nanomaterials.
- To gain knowledge of working mechanism of instruments
- To learn data interpretation knowledge acquired from Instruments
- To facilitate the hands training experience
- To understand the chemical, physical behavior of Macro to nanoscale materials through comprehensive tools

Prerequisite

Nil.

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recognize requirement of various characterization tools and nanomaterials.	Remember
CO2	Practice the structural characterization of nanomaterials.	Analyse
CO3	Evaluate the band-gap energy of semiconductor nanoparticles.	Apply
CO4	Analysis the dielectric and electro-chemical properties of nanomaterials	Apply
CO5	Demonstrate various application of nanomaterials by exploring materials properties	Analyse

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	2	2	3
CO2	2	3	2	2	3	2
CO3	2	1	2	3	2	1
CO4	3	2	1	2	2	3
CO5	2	2	1	3	2	2

Assessment Pattern

Bloom's Catorony	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	0	0	0
Understand	0	0	10
Apply	20	20	30
Analyze	20	20	30
Evaluate	10	10	20
Create	10	10	20

	K.8	S.Rangasam	y College o	f Technolog	y - Autonom	nous R 202	2				
60 PNT 2P1 - Advanced Characterisation Laboratory											
Department of Nanoscience and Technology											
Semester	Semester Hours / Week Total hrs. Credit Maximum Marks										
	L	Т	P		С	CA	ES	Total			
II	0	0	4	60	2	60	40	100			
 Èleme Detern Struct Chara Detern Electr Chara Chara Detern Chara Chara Chara Detern Detern Detern Detern Detern Lands 	nination of s ural charact cterization of nination of b cal characte cterization of size deter nination of s nine the we	s of nanocon surface topog erization of n of nano metal band-gap ene erization of na of nanomater mination usin specific surfa ttability of po	raphy and r anomaterial oxide using ergy using U anomaterials ials by electung dynamic ce area usin lymeric mate	g X-ray fluore oughness by s using X-ray photolumine V-Vis (UV)sp s using four-p rochemical In light scatterin g nitrogen ph erials through Drigin softwar	atomic force diffraction (2 scence (PL) pectroscopy* probe techniq npedance sp g (DLS)mean hysisorption r contact ang	microscopy XRD)analys spectroscop ue ectroscopy surements* neasureme	y (AFM)* is* oy* (EIS)* nts*				
ab Manual :	<u> </u>										
	s Characteri	sation Labora	atory - II Mai	nual", Depart	ment of NST	, KSRCT 20)22.				
eference(s) :											
		harles A. Eva Inn Publisher		Shaun Wilsor	n., "Encyclop	edia of Mate	erials Charac	cterization"			
			and Porosit	y Determinat	ions by Phys	isorption-M	easurements	s and			
3 Augus I k	مير احمد ا			Theory", Elsevier, 2006. 3 Augus I Kirkland, and John L Hutchison., "Nanocharacterisation", The Royal Society of Chemistry, 2007.							

*SDG:9- Build resilient infrastructure Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

60 PNT 2P2	Nanomaterials Device Fabrication	Category	L	т	P Credit 4 2		
OUFNI ZFZ	and Analysis Laboratory	PC	0	0	4	2	

- To understand the basics of nanoscale coating on various metallic specimen.
- To acquire knowledge about thin film instruments hands on training.
- To analyze and result interpretation of various nanoscale materials and devices.
- To learn device fabrication and construction assembling process.
- To estimate various properties of nanoscale materials for energy harvesting and anticorrosion applications.

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Benefit out the hands-on training experience in thin film technology.	Remember
CO2	Establish large scale engineering on nanoscale coating.	Analyse
CO3	Characteristize the materials scaling up properties through different instruments	Apply
CO4	Estimate corrosion resistance of organic/inorganic coatings.	Apply
CO5	Learn and fabricate small scale devices	Analyse

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	2	3	2	2	1	2
CO2	2	2	1	2	2	1
CO3	3	2	1	2	2	3
CO4	2	1	2	2	3	2
CO5	2	3	2	1	2	2

Assessment Pattern

Plaam'a Catagony	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	0	0	0
Understand	0	0	10
Apply	10	20	30
Analyze	20	20	30
Evaluate	20	10	20
Create	10	10	20

		K. S. R	angasamy	College of	f Technolog	y - Autonom	ous R202	2	
	e	60 PNT 2P2			vice Fabricat			ratory	
Department of Nanoscience and Technology Hours / Week Credit Maximum Marks									
	Semester	-		к Р	Total hrs.	Credit		ES	
	II	L 0	<u>т</u> 0	Р 4	60	2	CA 60	ES 40	Total 100
	 Develop Establis pyrolysis Validate Test the Fabricat Design tester. Construi Fabricat Evaluate electroc Study th Estimate using FI Fabricat 	the metallio the large- s. the mecha inear conc te ZnO/PVD the thin film tt the triboe te and interf e I (corrosion) a hemical woi he conductiv the corros RA Impedar te sensor se	c electrode scale antico nical proper luctivity of n F thin film c coated pho lectric ener- ace the self nd E (corrosion rkstation. ity of the ele- ion of prope- nce spectros of up for dete	layer over prrosion coa ties of thin netal oxide on glass su toconduction gy harvesto -powering of graphe ectrode ma erties of Al scopy. ection of bi	on glass spe the glass sub ating (Al ₂ O ₃ -2 film depositions s semicondure bstrate for ox ve/voltaic cel er and fabrica piezo electrica ene/polymer in aterials/polymer ological elem hotocatalytic	estrate throug ZrO ₂) on meta on using Vick ctor using Ke ygen gas se and test and ate via contac nano genera n presence co er using FRA posites coati eents. **	h sputtering allic specim ters's hardr ithley source nsing prope d tests the ct separatio ator. * of acid medi A Impedance	g Process. en by hot-ai ness. ce meter. erties. photocurren n mode* ium through ce spectrosc	nt using I-V opy.
Refe	erence(s):								
1	A. Karthik et International						ticles for Th	ermal Barrie	er Coating.
2	L. Arunraja e Applications,	t al, (2016)	EDTA Decc	orated Nano	ostructured Z	nO/CdS Thir	Films for C	Dxygen Gas	Sensing
3	O.K. Simya e Synthetic me	et al, Dye-se	nsitized sol				TiO ₂ hetero	junction nar	noparticles.
4	Zhong Lin W portable elec	ang*, Guan	g Zhu, Ya Y			Caofeng Pa	n, Progress	s in nanoger	nerators for
ab	Manual			<i>,</i> 0, <i>2</i> , v 0					
	Device Fabri	cation and	Testing La	boratory.	Department of	of Nano Scier	nce and Te	chnoloav. K	SRCT
<u> </u>				,					

*SDG:7- Modern energy for all **SDG:9 Build resilient infrastructure

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

60 PNT 301	Applications of	Category	L	Т	Ρ	Credit
60 PNT 301	Nanocomposites	PC	3	0	0	3

- To perceive the science and technology behind the nanocomposites.
- Acquire the knowledge on nanocomposite properties, features and processing of various nanocomposites.
- Impart knowledge on various testing methods, applications and recycling.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Acquire functional characteristic reinforced nanocomposite materials	
CO2	Apply the processing methodology for preparation of nanocomopsites.	
CO3	Demonstrate the basic properties organic-Inorganic materials.	
CO4	Learn the various testing methodology for nanomaterilas	
CO5	Use the nano materials as recycling for various industrial applications	

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	2	1	2
CO2	2	3	2	1	2	3
CO3	3	2	2	1	2	2
CO4	2	2	2	3	2	3
CO5	2	3	3	2	2	2

Assessment Pattern

Bloom's Cotonom	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	20
Apply	10	10	30
Analyze	10	10	20
Evaluate	10	10	10
Create	10	10	10

	K.S.F	Rangasamy	College of	Technology	- Autonomo	ous Regula	tion	
				lications of N				
Department of Nanoscience and Technology								
Semester Hours/Week Total hrs. Credit Maximum Mark								ks
Semester	L	Т	Р	rotarnis.	C	С	E	Total
	3	0	0	45	3	40	60	100
Significance of composite	es – particle	tes, function reinforced	– fibre reinfo	and reinforce rced – structu mobiles –mac	iral composi	te, Polymer	, metal and	[9]
Viscosity - T - Particle I processing - Velt proces	behavior – – Melting an ses with larg	– Non-New Insitu polyi d softening je deformat	vtonian Flow merization - Melt proces ions or high-	– Low-viscos - Post – For sses with sma shear rates -	ming-Melt, I	high-shear ∟ow-shear r	and direct ates flow –	[9]
Physics of i visco elasti	city –Surfac site – basic	Continuum ce mechani	measuremer cal properti	nts – Yield – es –Diffusion oosites–Nano	and perme	eability – F	eatures of	[9]
Characteriza characteriza Physicoche	ation – Sca micalanalysi	kperiment Iles innanc s–Characte	composites- erization of pl	Sample pre -Texture-Elec hysical proper erties -Recipe	ctromagnetic rties –Identif	energy-Vis	ualization-	[9]
APPLICATI Nanocompo Matrices–Ap - Automatic Material – C	ONS AND F osites-Optications-F componen contaminants	RECYCLING al, Structur Biodegradal ts – Corrosi s – Role of (B OF NANO ral Application ole Protein–Con Protection Contaminant On solid was	COMPOSITE ons- nanopa Ceramics-Foo n-Properties / is In Property ste managem	S articulate Sy od Preservati And Property Change. Fut	/stems Wit ives – Denta / Changes (al Materials Over Virgin	[9]
			Total	Hours				45
Text Books		anocompos	sites, 1st Ed	ition. Edited I	By Ahalapitiv	va Javatiss	a. Published	
2. Nan	copyright ocomposites	2022, , Ńov s: Fundame	ember 24, 2 ntals, Techn		plications Ha	ardcover – I		by CRC
2. Press 2. Nan by E Reference	s, Copyright : ocomposites immanuel C e (s):	2022, , Nov s: Fundame raig (Editor)	ember 24, 2 ntals, Techn , Publisher -	022 ology and Ap Larsen and K	plications Ha eller Educati	ardcover – I ion, 2017	mport,	
2. Nan by E Reference 1. Tho Prop	s, Copyright ocomposites mmanuel C e(s): masE. perties,Proce	2022, , Nov s: Fundame raig (Editor) Twardows essing,Char	ember 24, 2 ntals, Techn , Publisher - ski, In acterization,	022 ology and Ap Larsen and K troduction DesTechPubl	plications Ha eller Educati to ications,Apri	ardcover – I ion, 2017 Nanocom I 2007	mport, posite	Materia
2. Nan by E Reference 1. Tho Prop 2. Klau scale	s, Copyright ocomposites mmanuel C e(s): masE. perties,Proce is Friedrich, e,Springer,L	2022, , Nov s: Fundame raig (Editor) Twardows essing,Char Stoyko F ISA,2005	ember 24, 2 ntals, Techn , Publisher - ski, In acterization, akivov, Zho	022 ology and Ap Larsen and K itroduction	plications Ha eller Educati to ications,Apri Polymer Cor	ardcover – I ion, 2017 Nanocom I 2007 nposites fr	mport, posite om Nano–to	Materia

*SDG:4 quality education and opportunities for all

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	INTRODUCTION	
1.1	Significance of composites	1
1.2	Functions of matrix and reinforcement in composites,.	1
1.3	Classification of composites	1
1.4	Particle reinforced – fibre reinforced	1
1.5	Structural composite and Polymer	1
1.6	Metal and ceramic matrix composites.	1
1.7	Applications in automobiles	1
1.8	Machine tools and aerospace	1
1.9	sports equipments	1
2	PROCESSINGOFNANOCOMPOSITES	
2.1	Viscosity - Types of flow	1
2.2	Non-Newtonian Flow – Low-viscosity processing -	1
2.3	Solvent processing – Particle behavior –.	1
2.4	Insitu polymerization – Post – Forming-Melt, high-shear and	1
2.4	direct processing	
2.5	Melting and softening-	1
2.6	Melt processes with small shears or Low-	1
2.7	shear rates flow	1
2.8	Melt processes with large deformations or high-shear rates	1
2.9	Thermo-kineticprocesses	1
3	PROPERTIESOFNANOCOMPOSITES	
3.1	Physics of modulus	1
3.2	Continuum measurements	1
3.3	Yield – Fracture	1
3.4	Rubbery elasticity and visco elasticity	1
3.5	Surface mechanical properties	1
3.6	Diffusion and permeability	1
3.7	Features of nanocomposite	1
3.8	basics of polymer nano composites	1
3.9	Nano reinforcements – Matrix materials– Hazards of particles	1
4	TESTINGANDVALIDATION	
4.1	Characterization - Experiment design	1
4.2	Sample preparation – Imaging	1
4.3	Structural characterization	1
4.4	Scales innanocomposites–Texture	1
4.5	Electromagneticenergy–Visualization–Physicochemicalanalysis	1
4.6	Characterization of physical properties	1
4.7	Identification – Mechanical – Surface mechanical	1
4.8	Exposure – Barrierproperties	1
4.9	Recipes and standards	1
5	APPLICATIONSANDRECYCLINGOFNANOCOMPOSITES	
5.1	Nanocomposites–Optical, Structural Applications	1
5.2	Nanoparticulate Systems With Organic Matrices Applications	1
5.3	Biodegradable Protein–Ceramics–Food Preservatives	1
5.4	Dental Materials – Automatic Components	1
5.5	CorrosionProtection-	1
	PropertiesAndPropertyChangesOverVirginMaterial	
5.6	Contaminants	1
5.7	Role of Contaminants In Property Change	1
5.8	Future Regulatory Issues on Polymer Nanocomposite Based On	1
	solid waster management.	

5.9	Future Regulatory Issues on Polymer Nanocomposite Based On	1
5.5	solid waste management.	
	Total	45

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

60 DNT 202	Nanotechnology in Energy Storage	Category	L	Т	Ρ	Credit
60 PNT 302	Devices	PC	3	0	0	3

Objective

- To study the basic knowledge of Nanomaterials in Energy storage, Fundamentals, Rechargeable Batteries, Super capacitors, Fuel Cells and Advanced Batteries for Electric Vehicles and Emerging application.
- To Explore the application of Nanomaterials in Energy Storage and
- Acquire the knowledge about cell reaction, cell components and characteristics etc.,

Prerequisite

Basics of electronics

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the basic principles and concepts of energy storage	Remember
CO2	Acquire knowledge on Nanomaterials in energy storage devices	Remember
CO3	Know the basic concepts related to primary batteries	Apply
CO4	Understand the types and importance of primary batteries	Analyze
CO5	Know the basic concepts related to rechargeable batteries	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	3	2	2	1
CO2	2	3	3	3	2	2
CO3	3	2	3	2	2	1
CO4	3	3	3	3	2	3
CO5	3	2	3	2	2	2

Assessment Pattern

Bloom's Catagory	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30

Analyse	10	10	30
Evaluate	10	10	20
Create	10	10	0

		K.S.F	Rangasamy	College of	Technology	- Autonom	ous Regula	tion		
			60 PNT 302	- Nanotech	nology in En	ergy Stora	ge Devices			
			Depa	rtment of N	anoscience a	and Techno	logy			
Seme	octor		Hours/Wee	k	Total hrs.	Credit Maximu		aximum Mark	S	
Seme	ester	L	Т	Р	rotarnis.	С	C C E			
		3	0	0	45	3	40	60	100	
Nanot conve capac	techno ersion citors-fu	Materials for	stainable en or light em lar energy c	ergy- Energ itting diodes	y conversion s-batteries-ad Photovoltaic- F	vanced turb	ines-catalyt	ic reactors-	[9]	
Introd Zinc/c Const	luction carbon tructior	batteries - I	ithium prima ince charac	ary batteries teristics - N	 Performance Solid electro anomaterials 	lyte batterie	s – Cell read	ctions – Cell	[9]	
Introd batter	luction ies - (Cell reaction	ition - Chara ns - Cell Co	omponents -	ead- acid batt · Bulk and Na nent in Nano -	anomaterials	s in Cell Co		[9]	
Solar junctio - I-V	cells - on pho charac	todiodes- de	epletion reg	ion- electron	g material- So and holes tra nction and tri	nsports - ch	arge carrier	generation	[9]	
Types H₂ ev Applic -Cons	s - PEN aluatio cable fu structio	n and challe uel cell tech n - Nanom	C - Fuel cells enging of H nologies - A naterials ele	 characteris Fuel Storge dvantages c 	atics and Oper e - Innovative of Nanomateri gn - Perform s.	designs for als in Fuel 0	low wattage Cells. Super	e fuel cells - capacitors -	[9]	
								Total Hours	45	
	Srivas Nanos	materials fo stava, Scrive	ener Publisł laterials for	ning LLC, 20 Electrochem	y Storage Dev 19. hical Energy P			-		
Defer	rence(s									
Refer										
1.		as Reddy, "	Linden's Ha		atteries", McC			ISA, 2010.		
1. 2.	Ronal	as Reddy, " d M. Dell Da	Linden's Ha avid A. J. R	and, "Unders	standing Batte	eries", RSC,	UK, 2001.	ISA, 2010.		
1. 2. 3.	Ronal Conw	as Reddy, " d M. Dell Da ay, B. E., "E	Linden's Ha avid A. J. R Electrochem	and, "Unders ical Super ca	standing Batte apacitors", Sp	eries", RSC, ringer , UK ,	UK, 2001. 2015			
1. 2.	Ronal Conw	as Reddy, " d M. Dell Da ay, B. E., "E	Linden's Ha avid A. J. R Electrochem	and, "Unders ical Super ca	standing Batte	eries", RSC, ringer , UK ,	UK, 2001. 2015		UK,	

*SDG:4 quality education and opportunities for all

**SDG:7 Reliable, sustainable and modern energy for all Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	INTRODUCTION	
1.1	Nanotechnology for sustainable energy	1
1.2	Energy conversion process	1
1.3	Indirect and direct energy conversion	1
1.4	Materials for light emitting diode	1
1.5	Batteries and advanced turbines	1
1.6	Catalytic reactors	1
1.7	Capacitors and fuel cells	1
1.8	Solar energy conversion	1
1.9	Photovoltaic systems	1
2	PRIMARY BATTERIES	
2.1	Introduction to primary batteries	1
2.2	Classification of primary batteries	1
2.3	Performance characteristics of primary batteries	1
2.4	Zinc/carbon batteries characteristics	1
2.5	Lithium primary batteries	1
2.6	Solid electrolyte batteries	1
2.7	Cell reactions and constructions	1
2.8	Nanomaterials in specified primary batteries	1
2.9	Peacemakers and torpedo batteries	1
3	RECHARGEABLE BATTERIES	
3.1	Introduction to rechargeable batteries	1
3.2	Characteristics of lead acid batteries	1
3.3	VRLA batteries	1
3.4	Lithium ion batteries	1
3.5	Bulk and nanomaterials in cell constructions	1
3.6	Performance characteristics of rechargeable batteries	1
3.7	Nickel-MH batteries	1
3.8	Comparison between different rechargeable batteries	1
3.9	Recent advancement in nano electrode materials	1
4	SOLAR ENERGY SYSTEM	
4.1	Introduction to solar cells	1
4.2	Working principle of solar cells	1
4.3	Types of solar cells	1
4.4	Semiconducting materials	1
4.5	Properties of solar cells	1
4.6	Design of p-n junction photodiodes	1
4.7	Charge carrier generation of solar cells	1

4.8	I-V characteristics of solar cells	1
4.9	Metal semiconductor heterojunctions	1
5	FUEL CELLS AND SUPERCAPACITORS	
5.1	Introduction to fuel cells and supercapacitors	2
5.2	Types of fuel cells	1
5.3	PEMFC fuel cells	1
5.4	SOFC fuel cells	1
5.5	Characteristics and operation of fuel cells	1
5.6	Innovative designs for low wattage fuel cells	1
5.7	Applications of fuel cell technologies	1
5.8	Advantages of nanomaterials in fuel cells and supercapacitors	1
5.9	Performance characteristics of supercapacitors	1
	Total	45

Course Designers

Mr. R. Mohanraj (mohanrajr@ksrct.ac.in)

60 PNT 3P1	CO DNT 2D1 Decised Work Dises 1	Category	L	т	Р	Credit
00 FNT 3FT	Project Work-Phase I	EEC	0	0	12	6

- To help the students apply their academic knowledge and technical skills in a specific domain
- To facilitate the students to identify, formulate and solve engineering problems
- To help the students design a system, component or process to meet the desired needs within realistic constraint
- To work and communicate efficiently in multidisciplinary terms
- To develop an understanding of professional and ethical responsibility in students

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

At the end of the course, the students will be able to

CO1	Identify engineering problems in their domain of interest and carry out literature review in the chosen technical area	Apply
CO2	Analyze and identify an appropriate technique to solve the problem.	Analyse
CO3	Design engineering solution, do experimentation / simulation / programming / fabrication/ collect and interpret data utilizing a systems approach	Create
CO4	Communicate effectively in oral and written forms	Apply
CO5	Demonstrate the knowledge, skills and attitudes of a professional engineer as an individual and member of a team	Analyze, Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	3	3
CO2	2	3	2	2	2	3
CO3	3	2	3	3	3	3
CO4	3	3	3	2	3	3
CO5	3	3	2	2	3	3

K. S. Rangasamy College of Technology - Autonomous R2022										
	60 PNT 3P1 - Project Work-Phase I *									
	Department of Nanoscience and Technology									
Semester	н	ours / Wee	k	Total hrs.	Credit	Maximum Marks				
Semester	L	Т	Р	Total firs.	С	Total				
III	0	0	12	60	6	100				
Out de line e /lus e trustis										

Guideline/Instrution to students

- A committee is constituted with the project coordinator, project guide and HOD/Senior professor in the department
- Three reviews have to be conducted by the committee
- Problem should be selected by every batch of students
- Students must do a literature survey collecting a minimum of 1 survey paper and 2 technical papers related to their work
- Report has to be prepared by the students as per the format

Preliminary implementation can be done if possible Internal evaluation has to be done based on the three reviews for 100 marks

	Week	Activity						
	I	Allotment of Faculty Guide by the H	OD					
	II Finalizing the topic with the approval of Faculty Guide							
Execution	III-IV	Collection of Scientific papers Mid semester presentation						
	V – VI							
	VII – VIII	Report writing						
	IX	Report Submission						
	X-XI	Final presentation						
	• 100% Co	ontinuous Assessment						
	 30 hrs/w 	eek and 2 credits						
	Component		Weightage					
Evaluation	Review – I Pre	sentation	20 %					
	Review – II Pr	esentation	20 %					
	Review – III Pr	esentation	20 %					
	Report prepara	ation and Submission	30 %					
	Vivo- Voce		10 %					
		Total	100%					

*SDG:8 productive employment

	K. S. R	angasamy	College of	f Technology	/ - Autonom	ous R202	22		
		60 P	NT 4P1 - P	roject Work	- Phase II *				
Department of Nanoscience and Technology Hours / Week Credit Maximum Marks									
Semester IV	*			Total hrs.					
	L	Т	Р		С	CA	ES	Total	
IV	0	0	24	60	12	40	60	100	
 To make the students with Innovative Ideas. To provide exposure to the students to new areas of nanotechnology. To solve a scientific problem in both practically and theoretically 						ogy.			
Methodolog	 To solve a scientific problem in both practically and theoretically Each student is allotted to a faculty of the department by the HOD By mutual discussions, the faculty guide will assign a topic in the general /subject are the student. The students have to refer the Journals and conference proceedings and collect the published literature. The student is exposed to collect at least 60 such Research papers published in the 5years. Using Power point, the student has to make presentation for 15-20 minutes followed 10 minutes discussion. The student has make two presentations, one at the middle and the other near the entite semester. The student has to write a project report for about 30-60 pages (Title page, One page Abstract, review of research paper under various subheading, Concluding remarks a List of References). The project report has to be submitted to the HOD one week bef the final presentation, after the approval of the faculty guide. 						ect the in the last llowed by r the end of ne page narks and		
		ontinuous As nd 12credits		and 40 % En	d semester e Weightag				
Evaluation	•	esentation					0 %		
	Review – II Pr	resentation				2	0 %		
Review – III Presentation 30 %									
	End semester	Report prep	paration and	d Submissior	1	4	0 %		
				Tota	al	1(00%		

*SDG:8 productive employment

60 PNT E11	Delumero in Nenetechnology		Category	L	Т	Ρ	Credit
	Polymers In Nanotechnology	ology	PE	3	0	0	3

- To understand the formation of polymer chain
- To learn strength of the polymer and crystallinity
- To classify the types of nanocomposite
- To analysis the behavior of nanoscale organic transistor
- To compare properties of the natural and synthetic polymer

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recall basic ideas of polymerization technique	Remember
CO2	Acquire the knowledge about strength of the polymer	Apply
CO3	Analyze the behavior of nanocomposite	Analyze
CO4	Differentiate different types of LED's	Apply
CO5	Classify the different types of polymers	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern

Plaam'a Catagony	Continuous Assessr	End Sem Examination		
Bloom's Category	1	2	(Marks)	
Remember	10	10	10	
Understand	10	10	20	
Apply	10	10	30	
Analyze	10	10	30	
Evaluate	10	10	10	
Create	10	10	0	

M.Tech.(NST) - Degree Programme 2022-2023

		K.S.F	Rangasamy	College of	Technology	- Autonom	ous Regula	tion	
					lymers In Na				
Department of Nanoscience and Technology									
Seme	otor	ŀ	lours/Weel	ĸ	Total hrs.	Credit			ĸs
Seme	Ster	L	Т	Р	Total III's.	С	С	E	Total
		3	0	0	45	3	40	60	100
INTRODUCTION Classification, formation of polymers - chain growth and step growth polymerisation, copolymerisation – electropolymerisation thermoplastics and thermosets – micro - nanostructures in polymers – polymer length, molecular weight, amorphous and crystalline.						[9]			
behavi polyme	er moi iour- g erisatio	rphology- C glass transit on – mecha	tion temperation		ngth, Surface t g behavior, ir ation.				[9]
NANOPOLYMERS Preparation and characterisation of diblock copolymer based nano hybrids, Nanoparticles polymer ensembles; Assembly of polymer – polymer nanocomposite from polymerisation; [9] polymers/clay nanocomposites.					[9]				
NANOPOLYMERS IN ELECTRONICS Printing and patterning techniques - nanoscale behaviour in organic transistors - transition of sensing response by organic transistor from micro to nanoscale - organic field effect transistor, organic light emitting diode. Molecularelectronics. [9]					[9]				
NANOPOLYMERS IN TEXTILES					[9]				
							Т	otal Hours	45
Refere	•								
		R allcock, F tion, 2003	rederick W	lampe and J	lames E Mark	k," Contempo	orary polym	er chemistry"	, person
					ctronics" smit				006
					d nanotechno				
4 I	France	es Gardiner	, Eleanor ca	arter,: polyme	er electronics	 – a flexible 	technology"	, ismithers, 2	009

*SDG:4 quality education and learning opportunities for all

Course Content and Lecture Schedule

S.No	Торіс	No. o Hours
1	INTRODUCTION	
1.1	Classification of Polymer	1
1.2	Function of polymers	1
1.3	Polymerization	1
1.4	Copolymerization	1
1.5	Electro polymerization	1
1.6	Thermoplastics and thermosets	1
1.7	Micro - nanostructures in polymers	1
1.8	Polymer length, molecular weight	1
1.9	Amorphous and crystalline	1
2	PROPERTIES	
2.1	Polymer morphology	1
2.2	Crystallinity	1
2.3	Tensile strength, Surface tension, Young's modulus	1
2.4	Phase behavior	1
2.5	Glass transition temperature	1
2.6	Mixing behavior	1
2.7	Plasticizers	1
2.8	Types of polymerization, mechanisms	1
2.9	Polymer degradation	1
3	NANOPOLYMERS	
3.1	Preparation diblock copolymer	1
3.2	Characterisation of diblock copolymer based nano hybrids	2
3.3	Nanoparticles polymer ensembles	1
3.4	Assembly of polymer	1
3.5	Polymer nanocomposite from polymerization	2
3.6	Polymers nanocomposites.	1
3.7	clay nanocomposites.	1
4	NANOPOLYMERS IN ELECTRONICS	
4.1	Printing techniques	1
4.2	Patterning techniques	1
4.3	Nanoscale behaviour in organic transistors	2
4.4	Transition of sensing response by organic transistor from micro to nanoscale	2
4.5	Organic field effect transistor	1
4.6	Organic light emitting diode.	1
4.7	Molecularelectronics	1
5	NANOPOLYMERS IN TEXTILES	
5.1	Hydrogels	1
5.2	Synthetic polymers in electrospinning	1
5.3	Natural polymers in electrospinning	1
5.4	Controlling parameters of nanofibers	2
5.5	Morphology of nanofibers	2
5.6	Electro static self-assembled nanolayer films and coating in textiles	2
	Total	45

Course Designer

Dr. S. Satheeskumar (<u>satheeskumars@ksrct.ac.in</u>)

60 PNT E12

Nanotechnology in Biomedical Instrumentation

Category	L	Т	Ρ	Credit
PE	3	0	0	3

Objective

- To familiarize students with various aspects of measuring electrical parameters from living body.
- To introduce students with the characteristics of medical instruments and related errors.
- To illustrate various types of amplifiers used in biomedical instruments.
- To familiarize students with biomedical recorders.
- To introduce students with patient monitoring system & its characteristics.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Describe and characterize the sources of biomedical signals and needs of using biomedical instruments & their limitations.	Remember, Apply
CO2	Understand & describe pc based medical instrumentation & regulation of medical devices.	Remember, Apply, Evaluate
CO3	Describe and characterize medical instruments as per their specifications, static & dynamic characteristics and understand data acquisition system.	Remember, Understand, Analyze
CO4	Describe, analyze, characterize and design Bio-amplifiers.	Remember, Understand, Analyze
CO5	Understand, describe, characterize and design various medical recording systems & their components.	Remember, Understand, Apply

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	2	3	2	1	2	1
CO2	3	2	2	2	2	2
CO3	3	2	3	2	2	3
CO4	3	3	2	3	2	2
CO5	2	3	2	3	1	2

Assessment Pattern

Bloom's Category	Continuous (End Sem Examination		
Bieemeeatogery	1	2	(Marks)	
Remember (Re)	10	10	10	
Understand (Un)	10	10	20	
Apply (Ap)	10	10	30	
Analyze (An)	10	10	30	
Evaluate (Ev)	10	10	10	
Create (Cr)	10	10	0	

	K.S.Rang	asamy Co	llege of T	Fechnology –	Autonomo	usR2022		
	60 PNT E			/ in Biomedica		ntation *		
M.Tech – Nano Science and Technology								
Semeste	r Hour	s/Week		Total hrs.	Credit		Maximum M	
	L	Т	Р		С	CA	ES	Total
II	3	0	0	45	3	40	60	100
	INSTRUMENTATIC							
	f Biomedical Signals							
	I Instrumentation sy							
ledical d	ts, General constra	ints in des	sign of n	iedical instrum	Tentation s	ystem, r	legulation o	•
	ons of instrument	s. Static	& Dyna	mic character	istics of r	medical	instruments	
	ion of errors, Statis							
inearizat	on of technique, Dat	a Acquisiti	on Systen	n.		•	-	
	TRIC SIGNALS ANI							
	ioelectric signals, El							
	tifacts, Instrumentat				of bioelectr	ric amplif	iers, Carrie	r •••
	Chopper amplifiers, CAL RECORDING S		isitive det	ector.				
	ording systems, Ger		deration fo	or signal condi	tioners Pre	amplifiers		
Amplifier,	Isolation Amplifie			aph, Vectorc				
		ctromyogra		ther biomed		rders,	Biofeedbac	. 191
nstrumen	tation, Electrostatic			ic coupling to	AC signal	s, Prope	r grounding	,
	lation and accident p	prevention.						
	onitoring Systems						-	_
	oncepts, Cardiac mo							
	Heart rate meter, F on instrumentation, (est, Cardia	
autenzat		Jiyanizan	n anu eq	uipinents useu			Total Hours	s 45
Textboo	k(s).							5 70
	S. Khandpur "Handbo	ook of Bio-I	Medical In	strumentation'	' 2nd Editio	n Tata M	CGraw Hill	
	Carr&J.M.Brown, "In							n Acia
Referen		liouuciion	lo biomec			Jy reals		п, Азіа
	mwell, Weibell& Pfei					-		dia
2. Jos	eph Bronzino, "Biom	edical Eng	ineering a	nd Instrumenta	ation", PWS	Engg . ,	Boston.	
3. J.W	ebster, "Bioinstrume	ntation", W	'iley & Soi	ns.				
4. Jos	eph D.Bronzino, "The	e Biomedic	al Engine	ering handboo	k", CRC Pre	ess.		
	12 Encure healthy			6				

*SDG:3 Ensure healthy lives and promote well-being for all at all age

Course Contents and Lecture Schedule

S.No.	Торіс	No.of Hours
1	MEDICAL INSTRUMENTATION	1
1.1	Sources of Biomedical Signals	1
1.2	Basic medical Instrumentation system	1
1.3	Performance requirements of medical Instrumentation system	2
1.4	Microprocessors in medical instruments	1
1.5	PC based medical Instruments	1
1.6	General constraints in design of medical Instrumentation system	1
1.7	Regulation of Medical devices	2
2	NUMERICAL INTEGRATION	
2.1	Specifications of instruments	1
2.2	Static & Dynamic characteristics of medical instruments	1
2.3	Classification of errors	1
2.4	Statistical analysis	1
2.5	Reliability, Accuracy	1
2.6	Fidelity	1
2.7	Speed of response	1
2.8	Linearization of technique	1
2.9	Data Acquisition System	1
3	MATHEMATICAL MODELING	
3.1	Origin of bioelectric signals	1
3.2	Electrodes	1
3.3	Electrode-tissue interface	1
3.4	Galvanic Skin Response	1
3.5	BSR, Motion artifacts	1
3.6	Instrumentation amplifiers	1
3.7	Special features of bioelectric amplifiers	1
3.8	Carrier amplifiers-Chopper amplifiers	1
3.9	Phase sensitive detector	1
4	BIOMEDICAL RECORDING SYSTEMS	
4.1	Basic Recording systems	1
4.2	General consideration for signal conditioners	1
4.3	Preamplifiers, Differential Amplifier, Isolation Amplifier	1
4.4	Electrocardiograph, Vectorcardiograph, Phonocardiograph	1
4.5	Electroencephalograph, Electromyography	1
4.6	Other biomedical recorders, Biofeedback Instrumentation	1
4.7	Electrostatic and Electromagnetic coupling to AC signals	1
4.8	Proper grounding	1
4.9	Patient isolation and accident prevention	1
S Meetir	ng held on 22/11/2023	seel C

Passed in BoS Meeting held on 22/11/2023 Approved in Academic Council Meeting held on 23/12/2023

> Chairman Board of Studies Department of NST KS.Rangasamy College of Technology Truchengode – 637 215

BoS Chairman

	M.Tech.(NST) - Degree Programme 2022-2023					
5	PATIENT MONITORING SYSTEMS					
5.1	System concepts	1				
5.2	Cardiac monitor	1				
5.3	selection of system parameters	1				
5.4	Bedside monitors	1				
5.5	Central monitors	1				
5.6	Heart rate meter, Pulse rate meter	1				
5.7	Holter monitor and Cardiac stress test	1				
5.8	Cardiac cauterization instrumentation	1				
5.9	Organization and equipments used in ICCU & ITU	1				
	Total	45				

Course Designers

Mr. R. Mohanraj (mohanrajr@ksrct.ac.in)

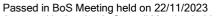
60 PNT E13	Nanosensors and	Category	L	т	Ρ	Credit
OUPNI EIS	Applications	PE	3	0	0	3

Objective

- Acquire knowledge in Characteristics of Sensors
- To understand the concept of Nano based sensors.
- To Identify the basic types of sensors and transducers
- Tostudy the types and working of gas and thermal sensors
- To understand the different in applications of sensors in nano filed.

Prerequisite

NIL


Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the basics, classification, fundamentals and configuration of sensors	Understand
CO2	Understand the parameters and physical nature of sensors	Understand
CO3	Describe the various features of transducers	Analyze
CO4	To understand the nature of piezoelectric materials.	Apply
CO5	Discuss the various industrial Applications of sensors	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	3	3
CO2	3	3	2	3	3	3
CO3	3	3	2	3	3	2

Approved in Academic Council Meeting held on 23/12/2023

M.Tech.(NST) - Degree Programme 2022-2023						
CO4	3	3	2	3	3	3
CO5	3	3	3	2	3	3

Assessment Pattern

Bloom's Catagony	Continuous Assessn	nent Tests (Marks)	End Sem Examination
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	40
Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	10

K.S.Rangasamy College of Technology - Autonomous Regulation 60 PNT E13 - Nanosensors and Applications Department of Nanoscience and Technology								
Compoter	H	lours/Weel	k	Total has	Credit	Ма	aximum Mar	arks
Semester	L	Т	Р	Total hrs.	С	С	E	Tota
II	3	0	0	45	3	40	60	100
Note: Hours	s notified aga	ainst each u	init in the syl	labus are only	y indicative b	out are not c	lecisive. Facu	ulty may
decide the r	number of ho	ours for eacl	h unit depen	ding upon the	concepts a	nd depth. Q	uestions nee	d not be
			•	ainst each un	•	•		
Characteris	stics of Sen	sors	-	-				
Sensors pr	inciple -Type	es of Sens	ors -Active	and Passive	sensors -	Static char	acteristic -	
Accuracy, o	offset and lir	nearity - Dy	ynamic char	acteristics - I	-irst and se	cond order	sensors -	
Physical eff	ects involved	l in signal tr	ansduction-	Photoelectric	effect - Pho	otoluminesc	ence effect	[9]
- Electrolur	ninescence	effect – che	emiluminesc	ence effect -	Piezoelectri	ic effect – F	Pyroelectric	
effect.								
Nano base	d sensors							
Density of a	state in 3D,	2D, 1D an	d 0D nanon	naterials – or	ne dimensio	nal gas ser	nsors:- gas	
sensing wit	h nanostruc	tured thin f	ilms, nanofil	ber, nano roc	l and quant	um dot abs	orption on	[0]
surfaces -r	netal oxide	modificatior	ns by additiv	/es - surface	modificatio	ns –organio	-inorganic	[9]
hybrid nanc	composite s	ensors- na	no optical s	ensors - nan	o mechanic	al sensors	 plasmon 	
resonance s	sensors.							
Self -power	ring device	and transd	ucers **					
Sensor Tec	hnologies ar	nd Energy H	larvester Fa	brication/Con	struction of	Sensor Dev	ices-Smart	
Sensors-Se	elf Powering	Sensors-	Photoacous	tic-Nano gen	erator: Trib	oelectric-Pie	zoelectric-	[9]
	rials-Hybrid	Generator	. Conducto	metric and o	capacitive t	ransducers	 optical 	191
Types-Mate		Conterator						[0]
••	based trans		optical fibe	r based tran	sducers –	Interferome	tric optical	[0]
waveguide		sducers –	•	r based tran chottky diode l			tric optical	[0]
waveguide transducers		sducers – nemical trar	•				tric optical	[0]
waveguide transducers GAS AND	— electrocl	sducers – nemical trar ENSORS	isducers- so		based transe	ducers.		[9]

	M.Tech.(NST) - Degree Programme 2022-2023	
base	d on semiconductor devices - Thermal energy sensors - temperature sensors - heat	
sens	ors- Optical and radiation sensors.	
	LICATIONS *	
Cant	ilever array sensors -Cantilever sensors for diagnosis of diabetes mellitus and cancer	
diagr	nosis -Nanotube based sensors for DNA detection and capnography -Nanowire based	[9]
sens	ors and single viruses - biomolecules and bio sensors- Electrochemical sensor and	
pesti	cide detectors-Night vision systems.	
	Total Hours (45+15)	45
Text	Books	
1	Vinod Kumar Khanna, "Nanosensors Physical, Chemical, and Biological" 2 nd Edition, CRC 2021.	Press,
2	K. Goser, P. Glosekotter and J. Dienstuhl, "Nanoelectronics and Nanosystems-From Transi toMolecular Quantum Devices", Springer, 2004.	sto, rs
3	Teik-Cheng Lim, "Nanosensors Theory and Applications in Industry, Healthcare and Defens Edition, CRC Press, 2010.	e", I st
4	Zhong Lin Wang, Nanogenerators for Self-powered Devices and Systems, first edition Institute of Technology, Atlanta, USA 2011,	, Georgia
Refe	rence Books	
1	K.E. Drexler, "Nano systems", Wiley India, 2010.	
2	W.R.Fahrner, "Nanotechnology and Nanoelectronics – Materials, Devices and Measuremen Techniques" Springer, 2006.	t
3	Herve Rigneault, Jean-Michel Lourtioz, Claude Delalande, Ariel Levenson, "Nanophotonics" IST -2006.	, Wiley-

*SDG:3 Ensure healthy lives and promote well-being for all at all age **SDG:7 Reliable, sustainable and modern energy for all

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	CHARACTERISTICS OF SENSORS	
1.1	Sensors principle -Types of Sensors -Active and Passive sensors	1
1.2	Static characteristic - Accuracy, offset and linearity	1
1.3	Dynamic characteristics	1
1.4	First and second order sensors	1
1.5	Physical effects involved in signal transduction	1
1.6	Photoelectric effect	1
1.7	Photoluminescence effect, Electroluminescence effect	1
1.8	Chemiluminescence effect	1
1.9	Piezoelectric effect and Pyroelectric effect.	1
2	NANO BASED SENSORS	
2.1	Density of state in 3D, 2D, 1D and 0D nanomaterials	1
2.2	One dimensional gas sensors	1
2.3	Gas sensing with nanostructured thin films	1
2.4	Nanofiber, nano rod and quantum dot absorption on surfaces	1
2.5	Metal oxide modifications by additives	1
2.6	Surface modifications	1
Meeting h	eld on 22/11/2023	N

Passed in BoS Meeting held on 22/11/2023

Approved in Academic Council Meeting held on 23/12/2023

Ceref C Chairman Board of Studies Department of NST K.S.Rangasamy College of Technology Tiruchengode – 637 215 **BoS** Chairman

	M.Tech.(NST) - Degree Programme 2022-2023	1
2.7	Organic-inorganic hybrid nanocomposite sensors	1
2.8	Nano optical sensors – nano mechanical sensors	1
2.9	Plasmon resonance sensors	1
3	SELF-POWERING DEVICE AND TRANSDUCERS	
3.1	Sensor Technologies and Energy Harvester Fabrication	1
3.2	Construction of Sensor Devices	1
3.3	Smart Sensors–Self Powering Sensors	1
3.4	Photoacoustic sensor	1
3.5	Nano generator: Triboelectric-Piezoelectric-Types, Materials- Hybrid Generator	1
3.6	Conductometric and capacitive transducers	1
3.7	Optical waveguide based transducers and optical fiber based transducers	1
3.8	Interferometric optical transducers and electrochemical transducers	1
3.9	Schottky diode based transducers	1
4	GAS AND THERMAL SENSORS	
4.1	Criteria for the choice of materials	1
4.2	Experimental aspects – materials, properties	1
4.3	Measurement of gas sensing property	1
4.4	Sensitivity	1
4.5	Discussion of sensors for various gases	1
4.6	Gas sensors based on semiconductor devices	1
4.7	Thermal energy sensors	1
4.8	Temperature sensors - heat sensors	1
4.9	Optical and radiation sensors	1
5	APPLICATIONS	
5.1	Cantilever array sensors	1
5.2	Cantilever sensors for diagnosis of diabetes mellitus and cancer diagnosis	1
5.3	Nanotube based sensors for DNA detection and capnography	1
5.4	Nanowire based sensors and single viruses	1
5.5	Biomolecules and bio sensors	1
5.6	Electrochemical sensor	1
5.7	Pesticide detectors	1
5.8	Night vision systems	1
	Total	45

Course Designers

1. Dr.T.Baranidharan - <u>baranidharan@ksrct.ac.in</u>

M.Tech.(NST) - Degree Programme 2022-2023								
60 PNT E14	Nanadaviasa		Category	L	т	Р	Credit	
	Nanodevices		PE	3	0	0	3	

Objective

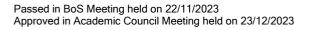
- To analyse the development of nano electronics.
- To study the principle behind the nanodevices.
- To explore the application of nano devices.
- To analyse and study the molecular and bioelectronics on nano application.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to


CO1	To impart the knowledge on the semiconductor nanodevices	Apply
CO2	Realize electron conduction in metal based nanoparticles	Analyze
CO3	To impart fundamental knowledge about crystallography, conducting, superconducting, magnetic, dielectric, semiconducting materials	Remember
CO4	Understand the emerging ideas of challenges of synthesis of nanomaterials	Remember
CO5	Discuss the applications of nano electronics	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	2	3	3	3
CO2	2	2	3	3	2	2
CO3	2	3	3	3	1	1
CO4	3	2	2	2	2	1
CO5	3	3	3	3	1	3

Assessment Pattern

Bloom's Cotogony	Continuous Assessn	End Sem Examination (Marks)	
Bloom's Category	1 2		
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyse	10	10	30
Evaluate	10	10	20
Create	10	10	0

		K.S.Ra			Degree Programm Technology -		ous Regulat	tion	
					E14 – Nanode				
Department of Nanoscience and Technology									
Same	actor	ŀ	lours/Wee	ek	Total hrs.	Credit	М	aximum Marl	ks
Seme	ester	L	Т	Р	- Total nrs.	С	С	E	Total
I	I	3	0	0	45	3	40	60	100
• -	-	EVICES							
					copic structure				
					or - Electron s				[9]
					computer- B	it and Qub	oit – Cohei	rence and	
		– Quantum DEVICES	parallelish	n.					
			el effect a	nd tunneling	elements -Tur	neling diod	e – Resona	nt tunneling	
	-			-	es -Technolog	-		-	[0]
				-	al circuits desig		• •		[9]
	tor (SE			yales - Digila	al circuits desig	JII Daseu UII		gie election	
				e – Macroso	opic model - S	uner condu	cting switch	ing devices	
					Elementary cir	•	-	-	
-		•	-		•				[9]
Addressable memory - SQUID – Flux quantum device – LC - Gate – Magnetic flux quantum – Quantum cellular automata - Quantum computer with single flux devices – SFQD - RSFQD –									
		super condu		•		nux devices	S - SFQD	- NOFQD -	
		S IN NANO	-						
				- Survey of	limits – Repla	coment of t	محمامام	s - Eperav	
		-		•	as limiting effe		-	•••	[0]
		•		•	eliability as lir			•	[9]
					al failure rates				
					a failure failes	by turnening		airioise	
-				r = DNA and	alyser molecula	ar electronic	s - Switche	e based on	
			-		Ifassemblingci				[0]
			•		nemical reacti	•			[9]
proces	•		in process	Sing with ci	lemical leacu				
proces	sing.							otal Hours	45
Defens							I		45
Refere	ence(s)		- 44			and a small NI		. 	
1					nl, "Nanoelectro	onics and N	anosystems	s-From Transi	stors to
			III Devices	s", Springer,					
2		Rignogult I	oon-Micha	allourtioz (lauda Dalalan	de Ariello	Venson "No	nonhotonice"	
2					laude Delalan				, ISTE.
2	W.R.F		notechnol		Claude Delalan Ioelectronics –				, ISTE.

*SDG:4 quality education and opportunities for all

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	QUANTUM DEVICES	
1.1	Quantum electronic devices	1
	neld on 22/11/2023 council Meeting held on 23/12/2023	Chairman Board of Studi Department of NST KSRangasamy College of Techno Truchengode – 637 215

BoS Chairman

	M.Tech.(NST) - Degree Programme 2022-2023	
1.2	Electrons in mesoscopic structures	1
1.3	Short channel MOS transistor	1
1.4	Split gate transistor	1
1.5	Electron wave transistor and electron spin transistor	1
1.6	Quantum cellular automation	1
1.7	Quantum dot array and quantum computer	1
1.8	Bit and qubit	1
1.9	Coherence and quantum parallelism	1
2	TUNNELING DEVICES	
2.1	Introduction about tunneling elements	1
2.2	Resonant tunneling diodes	1
2.3	Three terminal resonant tunneling diodes	1
2.4	Technology of RTD	1
2.5	Memory applications of RTD	1
2.6	Basics of logic circuits	1
2.7	Dynamic logic gates	1
2.8	Digital circuits design based on RTBT	1
2.9	Single electon transistor	1
3	SUPERCONDUCTING DEVICES	
3.1	Mesoscopic characteristics	1
3.2	Superconducting switching devices	1
3.3	Cryotron and josephson tunneling devices	1
3.4	Associative or content memory	1
3.5	Addressable memory	1
3.6	SQUID and flux quantum devices	1
3.7	Magnetic flux quantum and quantum cellular automation	1
3.8	Quantum computer with single flux devices	1
3.9	SFQD and RSFQD and its applications	1
4	CHALLENGES IN NANODEVICES	
4.1	Limitations of integrated electronics	1
4.2	Replacement of technologies in nanodevices	1
4.3	Energy supply and heat dissipation of nanodevices	1
4.4	Limits due to thermal particle motion	1
4.5	Debye length and thermal noise	1
4.6	Reliability as limiting factor	1
4.7	Physical limits and thermodynamic limits	1
4.8	Relativistic limits of nanodevices	1
4.9	Equal failure rates by tunneling	1
5	BIOELECTRONICS	
5.1	Basics of bioelectronics	2
5.2	Molecular processor	1
5.3	DNA analyser molecular electronics	1

Passed in BoS Meeting held on 22/11/2023 Approved in Academic Council Meeting held on 23/12/2023 Chairman Board of Studies Department of NST KSRangasamy College of Technology Tiruchengode - 637 215

BoS Chairman

M.Tech.(NST) - Degree Programme 2022-2023

5.4	Switch based on fullerenes and nanotubes	1
5.5	Polymer electronic devices	1
5.6	Self assembling circuits	1
5.7	Optical molecular memories	1
5.8	DNA computer and information processing	1
5.9	Nano machines and parallel processing	1
	Total	45

Course Designers

Mr. R. Mohanraj (mohanrajr@ksrct.ac.in)

60 PNT E15	Advanced Solid State Materials		Category	L	т	Р	Credit
	Advanced Solid State Materials		PE 3 0 0				3
		-					

Objective

- To identify the structure of crystal
- To know about dielectric concept
- To analyze the properties of magnetic material
- To recall the semiconducting properties
- To apply the smart materials to modern tool usage

Prerequisite

Solid state Physics

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Recognize the knowledge of the crystal	Remember
CO2	Analyze the dielectric properties	Apply
CO3	Classify the magnetic materials	Analyze
CO4	Compare the direct and indirect band gap materials	Apply
CO5	Identify the new usage of smart materials	Analyze

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

M.Tech.(NST) - Degree Programme 2022-2023

Assessment Pattern

Bloom's Category	Continuous Assessmer	End Sem Examination	
BIOOIII'S Calegory	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	30
Evaluate	10	10	10
Create	10	10	10

	K.S.F			Technology			ation	
				anced Solid				
Department of Nanoscience and Technology Bemester Hours/Week Credit Maximum Marks L T P C C E								
Semester				Total hrs.				-
	-	=	-		-	С	E	Total
II	3	0	0	45	3	40	60	100
CRYSTALL								
•	•			s-unit cell-crys	• •	•		
	•		• •	ns - miller indi	•			[9]
•	•			d cubic – hexa	-	•••		[0]
•	•	y bonds- se	econdary bo	nds- imperfec	tions-point,	line, surfac	e & volume	
 – color cente 								
DIELECTRI								
	•			properties - t	•••••••			[9]
			•	laussius-Mos				[9]
			anism - ferro	electric mater	ial –multiferr	oics - applie	cations.	
MAGNETIC		-						
		•		als and its p	•			
•				properties-ma	• •	-		[9]
-	omputer data	a storage	 NMR imag 	ing-MR imagi	ng-storage-r	memory-rec	cording and	
imaging.								
SEMICOND		-						
				l Gap-Direct, dirac - Brilloui				[0]
				ect-Charge Ca				[9]
and well ma						S OI Yuuntu		
SMART MA	TERIALS		-					
Shape mem	nory alloys-l	Phase Tran	sformations	- Properties	of SMA –	classificatio	on of metal	101
alloys-Ferro	us alloys-Ph	nase diagra	m-Titanium	alloys- Nonfe	rrous alloys	- applicatio	ons – Micro	[9]
valve & pum	p. Metallic g	glasses– pre	eparation – p	properties – a	oplications.			
· · ·		·	Total	Hours				45
Reference(s):							
	,	terials Scier	nce, Tata Mo	cGraw Hill, Ne	w Delhi, 20 ²	11.		
2 A.J. D	ekker, Solic	l state Phys	ics, Macmilla	an India Ltd, N	New Delhi, 2	012.		
				nternational(p				
4 C. Kitt	tle, Introduc	tion to Solid	State Physi	cs 8thEdition,	Wiley publis	shers, 2005	j.	

*SDG:4 quality education and opportunities for all

Course Contents and Lecture Schedule

S.No	Торіс	No. of Hours			
1	CRYSTALLOGRAPHY				
1.1	Crystalline solids	1			
1.2	Amorphous solids - lattice-basis-unit cell	1			
1.3	Crystallographic axes – primitives - lattice parameters - primitive cell	1			
1.4	Seven crystal systems	1			
1.5	1.5 Miller indices - crystal structure of materials - simple cubic				
1.6	Body centered cubic - Face centered cubic – Hexagonal structure	1			
1.7	Types of symmetry – types of bonding in solids	1			
1.8	Imperfections-point, line, surface & volume – color centers	1			
1.9	Plank's quantum hypothesis	1			
2	DIELECTRIC MATERIALS				
2.1	Basic concepts of dielectric materials	1			
2.2	Dielectric properties - types of polarization	1			
2.3	Classification of dielectric materials based on temperature	1			
2.4	Claussius-Mosotti relation	1			
2.5	Dielectric Constant and Dielectric Loss	1			
2.6	Breakdown mechanism	1			
2.7	Ferroelectric material	1			
2.8	Multiferroics	1			
2.9	Multiferroics - applications	1			
3	MAGNETIC MATERIALS				
3.1	Dia – Para - Ferro magnetic materials	1			
3.2	Anti-ferromagnetic materials and its properties	1			
3.3	Ferrites	1			
3.4	Hard and soft magnetic materials	1			
3.5	Ferrites - structural and its properties	1			
3.6	Magnetic optical recording materials	1			
3.7	Magnetic computer data storage	1			
3.8	NMR imaging -MR imaging	1			
3.9	Storage – Memory - Recording and imaging	1			
4	SEMICONDUCTING MATERIALS				
4.1	Preparation of Semiconducting Materials	1			
4.2	Band Gap - Direct, Indirect Band gap	1			
4.3	Semiconductor Band Gaps P - type	1			
4.4	Semiconductor Band Gaps N-type	1			
4.5	Fermi level	1			
4.6	Fermi Dirac	1			
4.7	Brillouin Zone - Advanced Semiconducting Materials	1			
4.8	Functionalization of Charge – Hall effect - Charge Carriers	1			

	M.Tech.(NST) - Degree Programme 2022-2023	
4.9	Basics of quantum dot, wire and well	1
4.5	materials and quantum laser	I
5	SMART MATERIALS	
5.1	Shape memory alloys - Phase	1
5.1	Transformations	I
5.2	Properties of SMA	1
5.3	Classification of metal alloys	1
5.4	Ferrous alloys - Phase diagram -	1
5.5	Titanium alloys	1
5.6	Nonferrous alloys - applications	1
5.7	Micro valve & pump	1
5.8	Metallic glasses – preparation	1
5.9	Metallic glasses – properties –	1
5.9	applications.	1
	Total	45

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

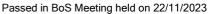
	Thin Film Science and	Category	L	Т	Р	Credit
60 PNT E16	Technology	PE	3	0	0	3

Objective

- To understand the basic knowledge of thin film technology.
- To learn the application of nanomaterials in thin film technology
- To acquire the knowledge about various coating technique and modification of surface
- To understand the basic properties of Thin film and its characterization techniques.
- To learn the basic applications of Thin film and its industrial

Prerequisite

Basics of Thin film technology


Course Outcomes

On the successful completion of the course, students will be able to

CO1	Address basic principles and concepts of thin film techniques	Remember
CO2	Acquire knowledge on nanomaterial characterization techniques	Analyze
CO3	Verify the basic concepts of absorption and diffusion in thin films	Analyze
CO4	Identify the various stress in thin film	Analyze
CO5	Analyze the modification of surfaces of film	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Approved in Academic Council Meeting held on 23/12/2023

M.Tech.(NST) - Degree Programme 2022-2023

Assessment Pattern						
Pleam's Cotogony	Continuous Asse	Continuous Assessment Tests (Marks)				
Bloom's Category	1	2	(Marks)			
Remember	10	10	10			
Understand	10	10	10			
Apply	10	10	30			
Analyze	10	10	30			
Evaluate	10	10	10			
Create	10	10	10			

		K.S.F	Rangasamy	/ College of	Technology	- Autonom	ous Regula	tion	
			60 PNT	E16 - Thin I	Film Science	and Techn	ology *		
			Depa	rtment of N	anoscience a	and Techno	ology		
Som	ester		Hours/Weel	k	Total hrs	Credit	М	aximum Mark	S
Sem	ester	L	Т	Р	TOLATINS	С	С	E	Total
		3	0	0	45	3	40	60	100
Introc Chen – CV	duction nistry o D Ther	f Evaporatio	neory of ga on - Therma asma – Spir	ises - Physic al evaporation	cal vapor dep n – Pulsed las ating – Electr	ser depositio	on - Chemic	al methods	[9]
CHAI Surfa Seco Techi analy	RACTE Ice ana ndary niques rsis Teo	ERIZATION alysis techni Ion Mass S – Scanning chniques – E	TECHNIQU ques – Aug Spectroscop g Electron Ellipsometry	ger Electron by – X-ray Microscopy v – Photolum	spectroscopy Energy Dispe – Transmissi inescence Sp	ersive Analy on Electron	vsis- Imagin	g Analysis	[9]
Physi dimei Fund	isorptic nsional amenta	on – Chem phase trans als of diffus	isorption – sitions in ads ion – Grain	sorbate layei N Boundary	IS tion changes rs – Adsorptio Diffusion – T on during film	n kinetics – hin Film Dif	Desorption t	echniques.	[9]
STRE Origir polyc evolu	ESS IN n of Th rystallin ition -	THIN FILM in film stress ne films – Co film stress	S s - Classific prrelation be and subst	ations of stre etween film s rate curvatu	ess – Stress i tress and grai tre – Stoney	n epitaxial fi n structure -	- Mechanisr	ns of stress	[9]
 measurement – Scanning laser method. MODIFICATION OF SURFACES AND FILMS Introduction – Laser and their Interactions with Surfaces – Laser modification effects and applications – Laser sources and Laser scanning methods - Thermal analysis of Laser annealing Laser surface alloying - Ion implantation effects in solids – Energy loss and structural modification – compositional modification - Ion beam modification phenomena and applications. 						[9]			
				Total	Hours				45
Text	Book(s)							
1	Techr	nology and A	Applications	,Second Ed	sition technolo ition , Noyes terfaces, Sprir	Publications	, (1993).	coatings by	Science
	rence(chaces, opin	iger i ubliði	1013 (2000).		
1		1	nin Films - H	High density	Plasmas, Vol	ume 27, Spi	ringer Publis	shers. (2006).	
2				<u> </u>	ilms Publishe		•	. ,	

.

. . .

	M.Tech.(NST) - Degree Programme 2022-2023
3	L.B. Freund and S.Suresh, Thin Film Materials, (2003).
4	Hans Luth, Solid surfaces, Interfaces and Thin Films' 4 th Edition, Springer Publishers (2010)

*SDG:4 quality education and opportunities for all

Course Contents and Lecture Schedule

S.No		No. of
0.110	Торіс	Hours
1	THIN FILM DEPOSITION TECHNIQUES	
1.1	Introduction – Kinetic theory of gases	1
1.2	Physical vapor deposition techniques	1
1.3	Physics and Chemistry of Evaporation	1
1.4	Thermal evaporation	1
1.5	Pulsed laser deposition	1
1.6	Chemical methods – CVD Thermal and Plasma	1
1.7	Spin and Dip coating	1
1.8	Electro plating and Electroless plating	1
1.9	Deposition mechanisms	1
2	CHARACTERIZATION TECHNIQUES	-
2.1	Surface analysis techniques	1
2.2	Auger Electron spectroscopy	1
2.3	Photoelectron Spectroscopy	1
2.4	Secondary Ion Mass Spectroscopy	1
2.5	X-ray Energy Dispersive Analysis	1
2.6	Imaging Analysis Techniques SEM, TEM	1
2.7	Optical analysis Techniques	1
2.8	Ellipsometry & Photoluminescence Spectroscopy	2
3	ADSORPTION AND DIFFUSION IN THIN FILMS	
3.1	Physisorption – Chemisorption	1
3.2	Work function changes induced by adsorbates	1
3.3	Two-dimensional phase transitions in adsorbate layers	1
3.4	Adsorption kinetics – Desorption techniques	1
3.5	Fundamentals of diffusion	1
3.6	Grain Boundary Diffusion	1
3.7	Thin Film Diffusion Couples	1
3.8	Inter Diffusion - Electromigration in thin films	1
3.9	Diffusion during film growth	1
4	STRESS IN THIN FILMS	
4.1	Origin of Thin film stress	1
4.2	Classifications of stress – Stress in epitaxial films	2
4.3	Growth Stress in polycrystalline films	1
4.4	Correlation between film stress and grain structure	1
4.5	Mechanisms of stress evolution	1
4.6	Film stress and substrate curvature	1
4.7	Stoney formula – Methods of curvature measurement	1
4.8	Scanning laser method.	1
- <u>-</u> .0	MODIFICATION OF SURFACES AND FILMS	
5.1	Introduction – Laser and their Interactions with Surfaces	1
5.2	Laser modification effects and applications	1
0.2		

	M.Tech.(NST) - Degree Programme 2022-2023	
5.3	Laser sources and Laser scanning methods	1
5.4	Thermal analysis of Laser annealing	1
5.5	Laser surface alloying	1
5.6	Ion implantation effects in solids	1
5.7	Energy loss and structural modification	1
5.8	Compositional modification	1
5.9	Ion beam modification phenomena and applications.	1
	Total	45

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

	Nonotribology	Category	L	т	Р	Credit
60 PNT E21	Nanotribology	PE	3	0	0	3

Objective

- To provide the knowledge and importance of tribology
- To understand the principles of lubrication and tailoring surface
- Emphasize the knowledge of scientific disciplines in understanding tribological phenomenon.
- To understand the lubrication fluid mechanism
- To address the applications of tribology

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understanding the basic of tribology.	Remember
CO2	Gain the knowledge about Surface Forces.	Analyze
CO3	Describe about Lubrication, Friction and Wear.	Apply
CO4	Produce effective Mechanical Properties of materials.	Apply
CO5	Explaining about the application of tribology.	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO 3	PO4	PO5	PO6
CO1	3	3	3	2	2	2
CO2	3	3	2	3	2	2
CO3	2	1	3	2	2	1
CO4	2	2	3	2	2	1
CO5	2	3	3	3	3	3

Assessment Pattern

M.Tech.(NST) - Degree Programme 2022-2023							
Plaam'a Catagony	Continuous Asses	ssment Tests (Marks)	End Sem Examination				
Bloom's Category	1	2	(Marks)				
Remember	10	10	10				
Understand	10	10	10				
Apply	10	10	30				
Analyse	10	10	30				
Evaluate	10	10	20				
Create	10	10	0				

		K.S.F	Rangasamy	College of	Technology	- Autonom	ous Regula	tion	
				60 PNT E	21 – Nanotril	ology *			
			Depa	rtment of N	anoscience a	and Techno	ology		
Som	emester Hours/Week		Total hrs	Credit	Ма	aximum Mark	(S		
Sem	CSICI	L	Т	Р	Total IIIS	С	С	E	Total
I	II	3	0	0	45	3	40	60	100
Histo mode lubric	ry of thes of luces of luces of luces of luces of the second seco	brication- h Extreme pr	igin and Si ydrodynami essure lubr	c, Hydrostat	of micro/nano tic. Boundary ricants - type oxidation stab	lubrication, s and lubri	elasto hydro cating oils-	odynamic Lubricant	[9]
Methe betwee defor	ods us een dry mation	surface, fo Surface rou	y surface for rce betweer ughness and	orces- force n surfaces in d friction for	laws- Surfa liquid- Adhes ce, Adhesion- ical- chemical	sion and cap Scratching	oillary forces , wear and i	, modes of	[9]
Lubri lubric surfa	cant S ation- ce topo	Lubrication graphy- Liq	sity of lubr design of t uid mediate	typical mech d contact, in	d film lubrica nanical eleme terfacing tem ic degradatior	nts, transfo perature of s	rmation- Pa	rameter of	[9]
Scale Nome effect of det plasti	e Effec enclatu t on sur formati	ts in Mecha re, scale ef face roughn on-Two bod	anical Prop fect in mec less and cor y deformation	erties and T chanical prop ntact parame on -Three bo	-	strength, s fects in fricti on- Ratchet	ion – adhesi mechanism,	on. Types elastic to	[9]
Introc Coati	duction ng app	lication - sl	ibological p iding bearir	ngs, rolling a	– Tribology in contact- Beari ponent- wind	ings, gears,			[9]
							Т	otal Hours	45
Text	Book(,							
1	Bhara 2008.	t Bhushan,	Nanotribolo	gy and Nand	omechanics A	n Introductio	on, Springer	Berlin, Heide	elberg,
2			Handbook o	of Micro/Nan	o Tribology, 2	nd Edition,	CRC Press,	2020.	
	rence(s								
1	Nicho	las D. Spen	cer, "Tailorii	ng surfaces"	, World Scien	tific IISC Pre	ess, 2011		
2	H.G. F	Phakatkar a	nd R.R. Gho	orpade, "Trib	ology", Nirali	publication,	2009		
3	Bhara	t Bhushan,	"Principles a	and Applicat	ions to Tribolo	ogy", Wiley F	Publication, 2	2013	

*SDG:4 quality education and opportunities for all

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	INTRODUCTION TO TRIBOLOGY	
1.1	History of tribology	1
1.2	Significance of nanotribology	1
1.3	Purpose of lubrication	1
1.4	Modes of lubrication	1
1.5	Hydrodynamic and hydrostatic	1
1.6	Boundary lubrication	1
1.7	Extreme pressure lubrication	1
1.8	Types of lubricating oil	1
1.9	Types of additives	1
2	SURFACE FORCES AND MEASURING TECHNIQUES	
2.1	Methods used to study surface forces	1
2.2	Force laws	1
2.3	Surface force apparatus	1
2.4	Force between dry surface	1
2.5	Force between surface in liquid	1
2.6	Adhesion and capillary forces	1
2.7	Modes of deformation	1
2.8	Surface friction	1
2.9	Failure mechanism	1
3	LUBRICATION, FRICTION AND WEAR	
3.1	Lubricant states	1
3.2	Viscosity of lubricants	1
3.3	Fluid film lubrications	1
3.4	Theories of hydrodynamics	1
3.5	Lubrication design	1
3.6	Parameter of surface topography	1
3.7	Liquid mediated contact	1
3.8	Interfacing temperature of sliding surfaces	1
3.9	Types of wear mechanism	1
4	SCALE EFFECTS IN MECHANICAL PROPERTIES AND TRIBOLOGY	
4.1	Nomenclature	1
4.2	Scale effect in mechanical properties	1
4.3	Yield strength and shear strength	1
4.4	Scale effect on surface roughness	1
4.5	Types of deformation	1
4.6	Ratchet mechanism	1
4.7	Elastic to plastic regime	1

4.8	Tailoring surfaces	1
4.9	Modifying surface composition	1
5	APPLICATIONS OF TRIBOLOGY	
5.1	Introduction to tribological phenomena	1
5.2	Biotribology	1
5.3	Tribology in human body	1
5.4	Artificial organs	1
5.5	Coating applications	1
5.6	Sliding bearings	1
5.7	Rolling contact	1
5.8	Erosion and scratch resistant	1
5.9	Magnetic reco	1
	Total	45

Course Designers

R. Mohanraj (mohanrajr@ksrct.ac.in)

60 DNT 522	Nanatashnalasy in Automobiles	Category	L	т	Р	Credit
60 PNT E22	Nanotechnology in Automobiles	PE	3	0	0	3

Objective

- To provide exposure to the students on nanotechnology in automobiles.
- To study the various mateials used in automobiles systems and its applications
- To Understand the properties of nanomaterials for nanocoatings.
- To Acquire knowledge about nanosensors in automobiles.
- To Understand the challenges and opportunities of nanotechnology in automobiles.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	To know about the basic concept of nano fuels	Remember
CO2	Understand the world wide status of nano fluids in automobile nanotechnology	Apply
CO3	Evaluation of the interaction of nano fluids in automobiles	Apply
CO4	Identify various nano enabled component in automobile technology	Analyze
CO5	Identify various applications of nanomaterials in automobiles	Apply

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1

Passed in BoS Meeting held on 22/11/2023

Approved in Academic Council Meeting held on 23/12/2023

M.Tech.(I	NST) -	Degre	e Prog	ramme 2	2022-2023	

CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern

Dia amia Catavami	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyse	10	10	30
Evaluate	10	10	20
Create	10	10	0

K.S.R	-			ology - Auto		-	1	
				ology in Au				
	-			ence and Te			<u> </u>	
Semester	_	lours/Wee		Total	Credit		aximum Marks	-
	L	Т	Р	hrs.	С	С	E	Tota
III	3	0	0	45	3	40	60	100
NANOFUELS Nanofuel - Engine perform nanoparticles of AI, Fe and consumption for AI as comp materials- Nanostructured oil	Boron in bared to di	diesel were eselredu	e used as ced enviro	fuels- Fuel c nmental imp	onsumption act material	n materials Is- efficien	s -specific fuel cy of nanofuel	[9]
NANOFLUIDS * Synthesis of Nanofluids- m insulation -higher operatin dimension weight -replace improvement using Nanofl transfer fluids-magnetic Na Microchips Micro scale Flu	ng temper es cast iro uids - Nar inofluids -	ature-Red on block/lin ofluids for Nanofluids	uced fricti er- Nanof solar colle	on -surface luids for Se ectors- mole	finish and nsing Appli cular fluid-a	l affinity o cations - advanced	or oil-Reduce Heat transfer flow and heat	[9]
NANO COATINGS * Nanocoating materials -Ca engine-polycarbonate win automotive paints-dirt resi wipers-automotive textiles-	dow-scrat istant pair	ch resista nts- Nano-	nt-UV res coatings f	sistant and	self healin	g car pa	aints -interior-	[9]
NANOSENSORS * Micro scale physical - ten hydrogen - Safety-Additiona position– Occupant Classif Driver drowsiness monitor operation-Power door close	nperature, al airbags ication Se -Night visi ure sliding,	accelerati and sensor nsors -Tyre on –Comfe /lift –Anti-tr	ion, press rs-Satellite e pressure ort –Conve	e sensing mo e monitoring enience - Pa	dules-Roll o sensor-Lan assive authe	over sensir e Departu entication-	ng-Occupant re Warning - Door handle	[9]
CHALLENGES AND OPP Improving fuel cell performa nanostructured materials- layers- High performance a	ance of fut Improve fu	ure genera uel efficien	•	• •		•	-	[9]
		•	otal Hour	s				45
Text Books								1

	M.Tech.(NST) - Degree Programme 2022-2023
1.	Huaihe Song, Tuan Anh Nguyen, Ghulam Yasin, Nakshatra Bahadur Singh, Ram K. Gupta, "Nanotechnology
	in the Automotive Industry, Elsevier, 2022.
2.	Huaihe Song, Tuan Anh Nguyen, Ghulam Yasin, "Nanotechnology in the Automotive Industry (Micro and
Ζ.	Nano Technologies), Kindle Edition, 2022.
Ref	erence(s):
1	Joao Paulo Carmo and Joao Eduardo Ribeiro, New Advances in Vehicular Technology and
	AutomotiveEngineering", ISBN 978-953-51-0698-2, Published: August 1, 2012
	Yuwen Zhang ,Nanofluids: Research, Development and Applications, Nova Science Pub Inc (June 30,
2	2013)
3	Michael Berger." Nanotechnology in the automotive industry" Copyright Nanowerk 2010

*SDG:8 productive employment and decent work for all

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	NANOFUELS	
1.1	Introduction to nanofuels	1
1.2	Engine performance and emission burning characteristics.	1
1.3	Stable suspension of different nanoparticles	1
1.4	Environmental impacts of nanomaterials	1
1.5	Efficiency of nanofuel materials	1
1.6	Nanostructured lubricants	1
1.7	Reduced frictional loss	1
1.8	Surface finish and affinity	1
1.9	Fuel consumption of different materials	1
2	NANOFLUIDS	
2.1	Synthesis methods of nanofluids	1
2.2	Smart cooling nanofluids	1
2.3	Different properties of nanofluids	1
2.4	Thermal insulation of nanofluids	1
2.5	Nanofluids for sensing applications	1
2.6	Heat transfer improvements using nanofluids	1
2.7	Nanofluids for solar collectors	1
2.8	Advanced flow and heat transfer nanofluids	1
2.9	Nanofluid cooling of microchips	1
3	NANOCOATINGS	
3.1	Introduction to nanocoatings	1
3.2	Carbon based nanostructured materials	1
3.3	Vehicle weight reduction methods	1
3.4	Aluminium alloy engines	1
3.5	Scratch resistant and UV resistant	1
3.6	Self healing car paints and automative paints	1
3.7	Nanocoating for engine applications	1
3.8	Nanocoating in automative textiles.	1
3.9	Nanoparticle fillers for tires	1

4	M.Tech.(NST) - Degree Programme 2022-2023 NANOSENSORS	
4.1	Physical, temperature and acceleration sensors.	1
4.2	Additional air bags and sensors	1
4.3	Satellilte sensing modules	1
4.4	Roll over sensor and occupant positioning sensor	1
4.5	Tyre pressure monitoring sensor	1
4.6	Lane departure warning system	1
4.7	Driver drowsiness monitor	1
4.8	Passive authentication and door handle operation system	1
4.9	HVAC temperature and humidity sensor	1
5	CHALLENGES AND OPPORTUNITIES	
5.1	Improving fuel cell performance	2
5.2	Future generations of hydrogen powered cars	1
5.3	Flexible hydrogen sensor	1
5.4	Improving fuel efficiency	1
5.5	Polymer glazing	1
5.6	Fuel cell and solar cell	1
5.7	Electrochromatic layers	1
5.8	High performance automobile systems	1
5.9	Different opportunities of nanotechnology in automobiles	1
	Total	45

Course Designers

R. Mohanraj (mohanrajr@ksrct.ac.in)

		Category	L	т	Р	Credit
60 PNT E23	CORROSION ENGINEERING	PE	3	0	0	3

Objective

- To study the basic principle corrosion
- To understand the different form of corrosion.
- To explore the corrosion testing &monitoring.
- To minimize & prevent the corrosion.
- To study the corrosion control in industries

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Identify the types, mechanism, and factors influencing corrosion and describe its control measures	Analyze
CO2	Recognize types and theories of chemical bonding.	Understand
CO3	Review the types of chemical reactions	Analyze
CO4	Imbibe the concepts of chemical equilibrium.	Apply

CO5 Analyze and assess theory of adsorption and its applications.

Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	3
CO2	3	3	3	3	2	3
CO3	3	3	2	3	3	3
CO4	3	3	2	3	3	3
CO5	3	3	2	3	3	3

Assessment Pattern

Plaam'a Catagory	Continuous Assess	Continuous Assessment Tests (Marks)			
Bloom's Category	1	2	(Marks)		
Remember	10	10	10		
Understand	10	10	30		
Apply	10	10	40		
Analyse	10	10	20		
Evaluate	10	10	0		
Create	10	10	0		

	K.S.F	Rangasamy	College of	Technology	- Autonomo	ous Regula	tion	
				Corrosion E				
				anoscience a	and Techno			
Semester	mester	Hours/Week	ζ.	Total hrs.	Credit	Ма	aximum Mar	ks
Jemester	L	Т	Р	rotarms.	С	С	E	Total
III	3	0	0	45	3	40	60	100
Note: Hours	s notified aga	ainst each u	nit in the syl	labus are only	/ indicative b	out are not c	lecisive. Fac	ulty may
decide the n	number of ho	ours for each	n unit depen	ding upon the	concepts a	nd depth. Q	uestions nee	ed not be
asked based	d on the nun	nber of hour	s notified ag	ainst each un	it in the sylla	abus.		
Introductio	n to Corros	ion						
Chemical a	and electro	chemical co	orrosions- i	mechanism o	of electroch	emical and	d galvanic	
corrosions-	concentratio	on cell corros	sion- passivi	ity-Pourbaix d	iagram- soil,	, pitting, inte	er-granular,	[9]
water line, s	tress and m	icrobiologica	al corrosions	s- galvanic se	ries- factors	influencing	corrosion -	
measureme	nt of corrosi	on rate.						
DIFFERENT			-					
-	-	-	-	anular, stres			-	[9]
	<u> </u>			d mechanism	with specific	c examples.		
CORROSIO		_						
				ds: weight los			polarization	[9]
			mi plant & fi	eld tests, sus	ceptibility tes	st.		
CORROSIO								
		-		ntion through	-	-		[9]
	•	ion-cathodic	, anodic pr	rotection, spe	ecific applica	ations, ecor	nomics of	[0]
corrosion co								
assed in BoS M	eeting held on	22/11/2023					10	(Co

Approved in Academic Council Meeting held on 23/12/2023

	M.Tech.(NST) - Degree Programme 2022-2023	
COR	ROSION & ITS CONTROL IN INDUSTRIES	
studi	er, Process, Petrochemical, ship building, marine and fertilizer industries. Some case es-Corrosion and its control in different engineering materials: concrete structures, duplex, r duplex stainless steels, ceramics, composites and polymers. Corrosion auditing in	[9]
indu	stries, Corrosion map of India.	
	Total Hours	45
Text	Books	
1.	Fontana Mars G, Corrosion Engineering, 3rd Edition, Publisher: McGraw Hill Education, 2020	
2.	Pietro Pedeferri, Corrosion Science and Engineering, Springer Cham, 2018.	
Refe	rence(s):	
1	B. J. Little, Microbiologically Influenced corrosion, Wiley-Intersciene (2007)	
2	C.A. C.Sequeira, Microbial Corrosion, European Federation of Corrosion, Maney Pub. (2000)	
3.	Denny A Jones, Principles and Prevention of Corrosion (second edition), PrenticeHall, N. J.(1	996).
4.	H.Videla, J. F. Wilkes, R.A.Silva, Manual of Biocorrosion, CRC Press (1996).	

*SDG:4 Quality education and promote lifelong learning opportunities for all

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	PRINCIPLES OF CORROSION PHENOMENON	
1.1	Define corrosion	1
1.2	Introduction to Thermodynamics and kinetics	1
1.3	Emf series	1
1.4	Galvanic series	1
1.5	Pourbaix diagram	1
1.6	exchange current density	1
1.7	Passivity	1
1.8	Evans diagram	1
1.9	flade potential	1
2	DIFFERENT FORMS OF CORROSION	
2.1	Atmospheric corrosion	1
2.2	Uniform corrosion	1
2.3	Pitting crevice	1
2.4	Intergranular	1
2.5	Stress corrosion	1
2.6	Corrosion fatique	1
2.7	Dealloying	1
2.8	High temperature oxidation-origin	1
2.9	High temperature oxidation -mechanism with specific examples	1
3	CORROSION TESTING AND MONITORING	
3.1	Non-Electrochemical methods	1
3.2	Electrochemical methods	1
3.3	Corrosion weight loss method	1
3.4	Tafel Linear polarization	1
3.5	Impedance techniques	1

2.6	M.Tech.(NST) - Degree Programme 2022-2023	1
3.6	Corrosion lab test	1
3.7	Corrosion test in semi plant	1
3.8	field tests	1
3.9	susceptibility test	1
4	CORROSION PROTECTION	
4.1	Corrosion prevention through design	1
4.2	Corrosion prevention through design	1
4.3	Corrosion coatings	1
4.4	Corrosion inhibitors	1
4.5	Cathodic protection	1
4.6	Cathodic protection application	1
4.7	Anodic protection	1
4.8	Specific applications	1
4.9	economics of corrosion control	1
5	CORROSION & ITS CONTROL IN INDUSTRIES	
5.1	Power, Process	2
5.2	Petrochemical, ship building, marine and fertilizer industries	1
5.3	Some case studies-Corrosion and its control in different engineering materials	1
5.4	Concrete structures, duplex, super duplex stainless steels	1
5.5	Ceramics, composites	1
5.6	Polymers	1
5.7	Corrosion auditing in industries	1
5.8	Corrosion map of India	1
	Total	45

Course Designers

Dr.A. Karthik - karthik@ksrct.ac.in

	Nano safety and	Category	L	т	Р	Credit	
60 PNT E24	Environmental Issues	PE	3	0	0	3	

Objective

- To study the need of safety and environmental issues
- To understand the concept of Nanotoxicology.
- To Identify the basic types of Analytical Methods
- To learn the ethics and applications of nanotechnology in industry
- To understand the different challenges in applications.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	To understand the specific challenges for nanomaterials	Analyze
CO2	Understand the Challenges in Nanotoxicological management.	Understand

Passed in BoS Meeting held on 22/11/2023

Approved in Academic Council Meeting held on 23/12/2023

CO3	Identify the basic types of Analytical Methods	Analyze
CO4	Discuss the applications of nanotechnology in industry.	Apply
CO5	Analyze the different challenges in applications	Analyze

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	3
CO2	3	3	2	3	3	3
CO3	3	2	3	3	3	3
CO4	3	3	3	3	3	3
CO5	3	3	3	2	3	3

Assessment Pattern

Plaam'a Catagony	Continuous Assess	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	30
Apply	10	10	20
Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	0

	60 PNT E24 – Nano safety and Environmental Issues Department of Nanoscience and Technology							
Somostor	ŀ	lours/Weel	ĸ	Total hrs.	Credit	Ма	aximum Mar	'ks
Semester	L	Т	Р	Total III's.	С	С	E	Total
	3	0	0	45	3	40	60	100
decide the r	number of ho	ours for each	n unit depen	labus are only ding upon the gainst each un	concepts a	nd depth. Q		
Over view of Nano safety Identification of Nano - Specific Risks- Responding to the Challenge -Human health hazard – Risk reduction – Standards – Safety – transportation of NP– Emergency responders. Risk assessment –Environmental Impact – Predicting hazard – Materials Characterization. Risk Assessment related to nanotechnology – Environmental and policy making- Ecotoxicity measurement of Polychlirinated biphenyl and intermediates in their degradation								[9]
NANOTOXICOLOGY * Inhalation of nanomaterials – Overview. Introduction- Inhalation deposition and Pulmonary clearance of Insoluble Solids – Bio –persistence of Inhaled solid material. Systemic Translocation of inhaled Particles. Pulmonary effects of SWCNT- Pulmonary Inflammatory Responses to SWCNTs In Vivo - Interactions of pulmonary Inflammation with oxidative stress – Interactions of SWCNTs with Macrophages								
	in Macroph	ages						

	M.Tech.(NST) - Degree Programme 2022-2023					
	arch approaches. SWCNT – Experimental data. Toxicity of polymeric nanoparticles with					
respect to their application as drug carriers. Particle exposure through the indoor air environment						
	asurement of indoor of PM and experimental study.					
	CS *					
	Is for regulations, training and education for health protection and environmental security					
of nanotechnologies – definitions and essence – general benefits – benefits for health and						
	cal practice - potential risks - The approaches to assessment of exposure to the	[9]				
	technology. Bioethics and legal aspects of potential health and environmental risks in					
	technology – Legal regulatory considerations of nanotechnology.					
	LLENGES IN NANOTECHNOLOGY *					
Nanotechnology – the frame of worker training, public education, and participation – Introduction						
	notoxicity – Workers protection – International documents – protection of medical staff –	[9]				
	Nurses education – Public information. Occupational risk assessment and management – focus					
on Nanomaterials.						
on N		45				
	Total Hours	45				
	Total Hours Books					
	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R					
Text	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R and Management, 3rd Edition, Imprint: Elsevier, 2018.	egulation,				
Text	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R and Management, 3rd Edition, Imprint: Elsevier, 2018. Mark R. WiesnerJean-Yves Bottero, Environmental Nanotechnology: Applications and Impa	egulation,				
Text 1. 2.	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R and Management, 3rd Edition, Imprint: Elsevier, 2018. Mark R. WiesnerJean-Yves Bottero, Environmental Nanotechnology: Applications and Impa Nanomaterials, McGraw-Hill Companies, 2007.	egulation,				
Text 1. 2.	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R and Management, 3rd Edition, Imprint: Elsevier, 2018. Mark R. WiesnerJean-Yves Bottero, Environmental Nanotechnology: Applications and Impa Nanomaterials, McGraw-Hill Companies, 2007. rence(s):	egulation,				
Text 1. 2.	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R and Management, 3rd Edition, Imprint: Elsevier, 2018. Mark R. WiesnerJean-Yves Bottero, Environmental Nanotechnology: Applications and Impa Nanomaterials, McGraw-Hill Companies, 2007. rence(s): P.P. Simeonova, N. Opopol and M.I. Luster, "Nanotechnology - Toxicological Issues and	egulation,				
Text 1. 2. Refe	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R and Management, 3rd Edition, Imprint: Elsevier, 2018. Mark R. WiesnerJean-Yves Bottero, Environmental Nanotechnology: Applications and Impa Nanomaterials, McGraw-Hill Companies, 2007. rence(s): P.P. Simeonova, N. Opopol and M.I. Luster, "Nanotechnology - Toxicological Issues and Environmental Safety", Springer 2006.	egulation, acts of				
Text 1. 2. Refe	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R and Management, 3rd Edition, Imprint: Elsevier, 2018. Mark R. WiesnerJean-Yves Bottero, Environmental Nanotechnology: Applications and Impa Nanomaterials, McGraw-Hill Companies, 2007. rence(s): P.P. Simeonova, N. Opopol and M.I. Luster, "Nanotechnology - Toxicological Issues and Environmental Safety", Springer 2006. Vinod Labhasetwar and Diandra L. Leslie, "Biomedical Applications of nanotechnology", A diagonalized and the second sec	egulation, acts of				
Text 1. 2. Refe 1 2	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R and Management, 3rd Edition, Imprint: Elsevier, 2018. Mark R. WiesnerJean-Yves Bottero, Environmental Nanotechnology: Applications and Impa Nanomaterials, McGraw-Hill Companies, 2007. rence(s): P.P. Simeonova, N. Opopol and M.I. Luster, "Nanotechnology - Toxicological Issues and Environmental Safety", Springer 2006. Vinod Labhasetwar and Diandra L. Leslie, "Biomedical Applications of nanotechnology", A & son Inc,NJ, USA, 2007 .	egulation, acts of John Willy				
Text 1. 2. Refe 1	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R and Management, 3rd Edition, Imprint: Elsevier, 2018. Mark R. WiesnerJean-Yves Bottero, Environmental Nanotechnology: Applications and Impa Nanomaterials, McGraw-Hill Companies, 2007. rence(s): P.P. Simeonova, N. Opopol and M.I. Luster, "Nanotechnology - Toxicological Issues and Environmental Safety", Springer 2006. Vinod Labhasetwar and Diandra L. Leslie, "Biomedical Applications of nanotechnology", A & son Inc,NJ, USA, 2007 . Miyawaki, J.; et.al Toxicity of Single-Walled Carbon Nanohorns. ACS Nano 2 (213–226) 20	egulation, acts of John Willy				
Text 1. 2. Refe 1 2	Total Hours Books Matthew Hull, Diana Bowman, Nanotechnology Environmental Health and Safety, Risks, R and Management, 3rd Edition, Imprint: Elsevier, 2018. Mark R. WiesnerJean-Yves Bottero, Environmental Nanotechnology: Applications and Impa Nanomaterials, McGraw-Hill Companies, 2007. rence(s): P.P. Simeonova, N. Opopol and M.I. Luster, "Nanotechnology - Toxicological Issues and Environmental Safety", Springer 2006. Vinod Labhasetwar and Diandra L. Leslie, "Biomedical Applications of nanotechnology", A & son Inc,NJ, USA, 2007 .	egulation, acts of John Willy				

*SDG:12 Ensure sustainable consumption and production patterns

Course Content and Lecture Schedule

S. No	No Торіс	
1	INTRODUCTION	
1.1	Identification of Nano - Specific Risks	1
1.2	Responding to the Challenge	1
1.3	Human health hazard – Risk reduction	1
1.4	Standards – Safety – transportation of NP	1
1.5	Emergency responders. Risk assessment – Environmental Impact	1
1.6	Predicting hazard	1
1.7	Materials Characterization. Risk Assessment related to	1
1.7	nanotechnology	'
1.8	Environmental and policy making	1
1.9	Ecotoxicity measurement of Polychlirinated biphenyl and	1
1.9	intermediates in their degradation	I
2	NANOTOXICOLOGY	
2.1	Inhalation of nanomaterials – Overview	1
2.2	Introduction of Inhalation deposition and Pulmonary	1
2.3	Inhalation deposition and Pulmonary clearance of Insoluble Solid	1
2.4	Bio –persistence of Inhaled solid material	1
2.5	Systemic Translocation of inhaled Particles	1
2.6	Pulmonary effects of SWCNT	1

siane	Total	45
5.8	Focus on Nanomaterials	1
5.7	Occupational risk assessment and management	1
		-
5.6	protection of medical staff – Nurses education, Public information	1
5.5	International documents	1
<u>5.3</u> 5.4	Workers protection	1
5.2 5.3	Introduction – Nanotoxicity	1
5.1	Nanotechnology – the frame of worker training Public education, and participation	2
5 .1		2
4.9 5	CHALLENGES AND FUTURES	1
4.9	nanotechnology Legal regulatory considerations of nanotechnology	1
4.8	Legal aspects of potential health and environmental risks in	1
4.7	Bioethics of potential health and environmental risks in nanotechnology	1
4.6	The approaches to assessment of exposure to the nanotechnology.	1
4.5	Potential risks	1
4.4	Benefits for health and medical practice	1
4.3	Definitions and essence – general benefits	1
4.2	Environmental security of nanotechnologies	1
4 4.1	Needs for regulations, training and education for health protection	1
3.9 4	Experimental study of indoor of PM ETHICS	1
3.7 3.8	Measurement of indoor of PM	1
3.6	as drug carriers Particle exposure through the indoor air environment	1
	Toxicity of polymeric nanoparticles with respect to their application	
3.5	SWCNT – Experimental data	1
3.4	Nanoparticles – research approaches	1
3.3	cardiovascular toxicity Nanoparticles – Hypothesis	1
3.2	Experimental data – respiratory particulate matter exposure and	1
3.1	Nanoparticle exposure and systematic cardiovascular effects	1
3	EXPERIMENTAL ISSUES	
2.9	Interactions of SWCNTs with Macrophages	1
		1
2.7 2.8	M.Tech.(NST) - Degree Programme 2022-2023 Pulmonary Inflammatory Responses to SWCNTs <i>In Vivo</i> Interactions of pulmonary Inflammation with oxidative stress	

Course Designers

Dr.T.Baranidharan

- baranidharan@ksrct.ac.in

60 PNT E25	Micro and Nano Electro	Category	L	т	Р	Credit
00 FNT 225	Mechanical Systems	PE	3	0	0	3

Objective

- To impart the knowledge about the synthesis of nano structured semiconducting materials.
- To understand the basic about semiconducting properties of nanomaterials
- To impart the knowledge on the semiconductor nanodevices
- To understand concepts and principles of MEMS and NEMS
- To learn the basic and commercial applications of the Nanostructured materials.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Distinguish the properties between bulk and Nano-Semiconductors	Analyze				
CO2	Learn the various Components and structure of Nano Semiconductors	Understand				
CO3	Know the Advantages and Disadvantages of Nanostructured Semiconductors	Analyze				
CO4	Analyze the concept of quantum confinement effect	Analyze				
CO5	Distinguish the type of Nanostructured semiconductors	Analyze				
Mannin	Manning with Brogramme Outcomes					

Mapping with Programme Outcomes

Cos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	2
CO2	2	2	3	3	2	2
CO3	2	3	2	3	2	2
CO4	3	2	2	2	2	3
CO5	2	2	2	2	3	3

Assessment Pattern

Dia amia Catanami	Continuous Asse	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	20
Analyse	10	10	30
Evaluate	10	10	20
Create	10	10	10

K.S.Rangasamy College of Technology – Autonomous R 2022									
60 PNT E25 - Micro and Nano Electro Mechanical Systems *									
PNT : M.Tech – Nano Science and Technology									
Semester	H	ours / Week		Total hrs.	Credit		kimum Mark		
	L	Т	Р		C	CA	ES Tota		
III	3	0	0	45	3	40	60	100	
Fundamentals of MEMS MEMS Introduction - Low Cost - Redundancy and Disposability – Scaling – Made – Substrates – Processing – Mask – Developing – Etching - Road Map and Perspective Silicon Substrate – Silicon Growth – Crystal - Miller Indices – Semiconductor – Doping - Additive Techniques.								[9]	
with Resist – A	ohic Process Applying Pho ojection Prin	- Clean roon oto Resist - E ting - Develo	n - Photo F xposure a pment and	Resist - Positive R and Pattern Trans d Post Treatment	fer - Printir	ng Methods	- Contact-	[9]	
	Basic prope	erties - Bene		nomachines – Mi 1S devices - NEM			Memory –	[9]	
Fabrication and Pattern Transformation of NEMS Materials – Carbon Allotropes - Carbon Based Materials - Metallic Carbon Nanotubes -Difficulties – Simulations - Transduction Techniques - Current Challenges and future of NEMS - Deposition processes – Lithography – Etching processes.									
Applications of MEMS and NEMS Pressure sensor - Piezoresistive sensor - Capacitive sensor - Inertial sensor - Accelerometer - Gyroscope - Optical MEMS - Digital Micro mirror Device - Precision Optical Platform - Optical Data Switching - RF MEMS - MEMS switches - MEMS Resonators - Nano electro mechanical (NEM) relay - Bio MEMS & NEMS-Fabrication - Operation.							[9]		
.			•				Total h	ours: 45	
Text Books								<u> </u>	
Microen	ngineering, S	econd Editio	n, CRC P		-				
2 Thomas M.Aadams Richard A. Layton "Introductory MEMS" Fabrication and Applications, Springer 2014									
Reference(s)									
1 Tai-Ran Ltd 201		S & MICRO	SYSTEM	S Design and Mar	nufacture"	McGraw Hi	II Education	PVT	
-	-			nnology and Appli		-			
3 Bhusha 2007	n.B "MEMS/	NEMS and	Bio MEMS	S/NEMS" Springe	er Handboo	ok of Nanot	echnology, S	Springer	
	productive	e employme	nt and de	cent work for al					

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	Fundamentals of MEMS	
1.1	MEMS Introduction	1
1.2	Low Cost	1
1.3	Redundancy and Disposability	1
1.4	Scaling ,Made Substrates	1
1.5	Processing ,Mask and Developing	1
1.6	Road Map and Perspective Silicon Substrate	1
1.7	Silicon Growth Crystal - Miller Indices	1
1.8	Semiconductor Doping	1
1.9	Additive Techniques	1
2	Fabrication and Pattern Transformation of MEMS	
2.1	Photolithographic Process	1
2.2	Clean room	1
2.3	Photo Resist - Positive Resist , Negative Resist	1
2.4	Working with Resist – Applying Photo Resist	1
2.5	Exposure and Pattern Transfer Printing Methods	1
2.6	Contact Proximity and Projection Printing	1
2.7	Development and Post Treatment Masks and Resolution	1
2.8	Sensitivity and Resist Profiles	1
2.9	Mask Alignment and Permanent Resists.	1
3	Fundamentals of NEMS NEMS	
3.1	Introduction	1
3.2	Basic properties	1
3.3	Benefits of Nanomachines	1
3.4	Miniaturization	1
3.5	NEMS Memory	1
3.6	Importance of AFM	1
3.7	Top-Down Approach	1
3.8	NEMS devices	1
3.9	NEMS Advantages.	1
4	Fabrication and Pattern Transformation of NEMS	
4.1	Materials	1
4.2	Carbon Allotropes	1
4.3	Carbon Based Materials	1
4.4	Metallic Carbon Nanotubes	1
4.5	Difficulties, Simulations	1
4.6	Transduction Techniques, Current Challenges and future of NEMS	1
4.7	Deposition processes	1
4.8	Lithography	1
4.9	Etching processes.	1
5	Applications of MEMS and NEMS	
5.1	Pressure sensor	1
5.2	Piezoresistive sensor, Capacitive sensor	1

5.3	M.Tech.(NST) - Degree Programme 2022-2023 Inertial sensor, Accelerometer	1
5.4	Gyroscope, Optical MEMS	1
5.5	Digital Micro mirror Device, Precision Optical Platform	1
5.6	Optical Data Switching, RF MEMS	1
5.7	MEMS switches	1
5.8	MEMS Resonators	1
5.9	Nano electro mechanical (NEM) relay – Fabrication, Operation.	1
	Total	45

Course Designers

Dr.T.Baranidharan

- baranidharan@ksrct.ac.in

CO DNT E2C	Nonotochnology in Inductory		Category	L	т	Р	Credit
60 PNT E26	Nanotechnology in Industry	idustry	PE	3	0	0	3

Objective

- To understand the fundamental concept of contacting industrial concepts
- To study the basics structure about industrial based nanotechnology development
- To acquire knowledge of Nanotechnology In Industrial Production & Manufacturing
- To learn the Environmental, Health & Safety Issues
- To understand the industrial concepts in nanotechnology

Prerequisite

Basics of industry applications

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the basics concept of industrial requirements	Remember
CO2	Address about the surface interaction of micro and nanoscale object	Analyze
CO3	Explain the fundamental theories and experimental effects of Nanotechnology	Apply
CO4	Illustrate the experimental mechanical characterization of nanomaterials	Analyze
CO5	Distinguish the applications of nanotechnology in various industrials.	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Assessment Pattern			
Bloom's Category	Continuous Asse	End Sem Examination	
BIOOIII'S Calegory	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	30
Evaluate	10	10	20
Create	10	10	10

M.Tech.(NST) - Degree Programme 2022-2023

Advantages of nano electrical and electronic devices – Electronic circuit chips – Nanosens and actuators, Optical switches – Diodes and Nano-wire transistors - Memory storage – Light and displays – Filters (IR blocking) – Quantum computers – Energy devices – Medical diagno – Conductive additives - Lead-free solder – Nanocoatings –EMI shielding. Nanotechnology in Textiles and Cosmetics Nano finishing in textiles (UV resistant, anti-bacterial, hydrophilic, self-cleaning, flame retard finishes) – Modern textiles (Lightweight bulletproof vests and shirts, Colour changing prope	Tota 100 ors ing [9] ssis ant rty, [9]			
SemesterHours/WeekTotal hrs.CreditMaximumLTPCCEIII3004534060Nanotechnology in Electrical and Electronics IndustryAdvantages of nano electrical and electronic devices – Electronic circuit chips – Nanosens and actuators, Optical switches – Diodes and Nano-wire transistors - Memory storage – Light and displays – Filters (IR blocking) – Quantum computers – Energy devices – Medical diagno – Conductive additives - Lead-free solder – Nanocoatings –EMI shielding.Nanotechnology in Textiles and Cosmetics Nano finishing in textiles (UV resistant, anti-bacterial, hydrophilic, self-cleaning, flame retard finishes) – Modern textiles (Lightweight bulletproof vests and shirts, Colour changing proper	Tota 100 ors ing [9] ssis ant rty, [9]			
SemesterLTPTotal hrs.CCEIII3004534060Nanotechnology in Electrical and Electronics IndustryAdvantages of nano electrical and electronic devices – Electronic circuit chips – Nanosensand actuators, Optical switches – Diodes and Nano-wire transistors - Memory storage – Lightand displays – Filters (IR blocking) – Quantum computers – Energy devices – Medical diagno– Conductive additives - Lead-free solder – Nanocoatings –EMI shielding.Nanotechnology in Textiles and CosmeticsNano finishing in textiles (UV resistant, anti-bacterial, hydrophilic, self-cleaning, flame retard	Tota 100 ors ing [9] ssis ant rty, [9]			
III 3 0 0 45 3 40 60 Nanotechnology in Electrical and Electronics Industry Advantages of nano electrical and electronic devices – Electronic circuit chips – Nanosens and actuators, Optical switches – Diodes and Nano-wire transistors - Memory storage – Light and displays – Filters (IR blocking) – Quantum computers – Energy devices – Medical diagno – Conductive additives - Lead-free solder – Nanocoatings –EMI shielding. Nanotechnology in Textiles and Cosmetics Nano finishing in textiles (UV resistant, anti-bacterial, hydrophilic, self-cleaning, flame retard finishes) – Modern textiles (Lightweight bulletproof vests and shirts, Colour changing properties)	100 ors ing [9] sis ant rty, [9] ion			
Nanotechnology in Electrical and Electronics Industry Advantages of nano electrical and electronic devices – Electronic circuit chips – Nanosens and actuators, Optical switches – Diodes and Nano-wire transistors - Memory storage – Light and displays – Filters (IR blocking) – Quantum computers – Energy devices – Medical diagno – Conductive additives - Lead-free solder – Nanocoatings –EMI shielding. Nanotechnology in Textiles and Cosmetics Nano finishing in textiles (UV resistant, anti-bacterial, hydrophilic, self-cleaning, flame retard finishes) – Modern textiles (Lightweight bulletproof vests and shirts, Colour changing proper	ors ing [9] osis ant rty, [9] ion			
Advantages of nano electrical and electronic devices – Electronic circuit chips – Nanosens and actuators, Optical switches – Diodes and Nano-wire transistors - Memory storage – Light and displays – Filters (IR blocking) – Quantum computers – Energy devices – Medical diagno – Conductive additives - Lead-free solder – Nanocoatings –EMI shielding. Nanotechnology in Textiles and Cosmetics Nano finishing in textiles (UV resistant, anti-bacterial, hydrophilic, self-cleaning, flame retard finishes) – Modern textiles (Lightweight bulletproof vests and shirts, Colour changing prope	ing [9] isis ant rty, [9] ion			
Nano finishing in textiles (UV resistant, anti-bacterial, hydrophilic, self-cleaning, flame retard finishes) – Modern textiles (Lightweight bulletproof vests and shirts, Colour changing prope	rty, [9] ion			
of Gels, Shampoos, Hair-conditioners (Micellar self-assembly and its manipulation) – Sun-scredispersions for UV protection using titanium oxide – Colour cosmetics.				
Nanotechnology in industrial water treatment Mechanism for remediation of aqueous contaminants, photocatalyst; membranes incorporating nanomaterials, transport processes in membrane technology; nanomaterial based adsorbents for water and wastewater treatment – adsorption at metal oxide surfaces, hybrid adsorbents; case studies. Hierarchical self-assembled nano-structures and nanomaterials for adsorption of heavy metals.				
Nanotechnology in food industry: Food and New Ways of Food Production - Effici Fractionation of Crops Efficient Product Structuring -Optimizing Nutritional Values - Application of Nanotechnology in Foods : Sensing, Packaging, Encapsulation, Engineering Food Ingredient to Improve Bioavailability - Nanocrystalline Food Ingredients - NanoEmulsions - Na Engineered Protein Fibrils as Ingredient Building Blocks Preparation of Food Matrices - Concer about Using Nanotechnology in food production.	nts [9]			
Nanotechnology in Defence Military applications of Nanotechnology - Artificial intelligence materials - Propulsion – Vehic - Propellants and Explosives – Camouflage distributed sensors - Amour protection - Conventio weapons - Soldier systems - Implanted systems, Body manipulation - Autonomous system Mini-/Micro robots - Bio-technical hybrids - Small satellites and Space launchers - Nucl weapons - Chemical weapons - Biological weapons - Chemical/Biological protection.	nal [9] is -			
Total Ho	urs 45			
Text Book(s) 1 P. Brown and K. Stevens, Nanofibers and Nanotechnology in Textiles, Woodhead publication, London, 2006. 2 J. Altmann, Routledge, Military Nanotechnology: Potential Applications and Preventive Taylor and Francis Group, 2006	Arms Contr			
Reference(s)				
1 Diallo, M., Duncan, J., Savage, N., Street, A., and Sustich, R. (Eds). "Nanotechnology Applications for Clean Water" William Andrew. 2008				
2 P. J. Brown and K. Stevens, "Nanofibers and Nanotechnology in Textiles", Woodhead Limited, Cambridge, 2007	Publishing			
3 Q. Chaudry, L.Castle and R. Watkins Nanotechnologies in Food, RSC Publications,				
Passed in BoS Meeting held on 22/11/2023	Aspe			

	2010.
	Tian C.Z., Rao Y.S., Keith C.K.L., Zhiqiang H., Tyagi R.D., Irene M.C.L, "Nanotechnologies For Water
-	Environment Applications", ASCE publications, 2009

*SDG:8 productive employment and decent work for all

Course Contents and Lecture Schedule

S.No	Торіс	No. of Hours
1	INDUSTRIAL APPLICATIONS OF NANOTECHNOLOGY	
1.1	Nanotechnology in Consumer Products Inventory – Textiles	1
1.2	Cosmetics	1
1.3	Paint and Sports	1
1.4	Health care industry	1
1.5	Nanotechnology in Electronics	1
1.6	Automobile Industry	1
1.7	National Security	1
1.8	Defense – camaflaudge nuclear weapon	1
1.9	Space launcher- chemical and biological weapons	1
2	THERMAL INSULATION AND ENERGY SAVINGS	
2.1	Thermal Insulation	1
2.2	Insulation Works	1
2.3	R –Values, Types of Insulation	1
2.4	Insulation Materials, Radiant barriers	1
2.5	Moisture Control Ventilation, Calculating requirements	1
2.6	Factors influencing performance, Energy Saving	1
2.7	Energy Design for efficiency – Electricity & Fuel,	1
2.8	Electronics, Automobile, Planning renewable systems	1
2.0	Solar electric systems	I
2.9	Wind electric systems, Hybrid wind and solar, Micro	1
	hydropower systems	
3	INDUSTRIAL ECOLOGY	
3.1	Material flows in chemical manufacturing	1
3.2	Industrial parks	1
3.3	Assessing opportunities for waste exchanges and by product synergies	2
3.4	Lead Encapsulation	1
3.5	Reduce Carbon Footprint and Green House Gases (GHG)	1
3.6	Leadership In Energy & Environmental Design	1
3.7	LEED For Buildings	1
3.8	LEEDs in Home, Schools	1
4	NANOTECHNOLOGY IN INDUSTRIAL PRODUCTION & MANUFACTURING	
4.1	Nanotechnology in Construction	1
4.2	Cement-Steel-Wood-Glass-Coatings	1
4.3	Fire Protection and detection	1
4.4	Risks in construction	1
4.5	Nanostructured materials in Manufacturing	1
4.6	Nanocomposites	1
4.7	Nanocrystals- Nano clays and nanocomposites	1
4.8	Nanocomposite coatings	1
4.9	Nanotubes, Nano catalysts, Nano filters	1
5	INDUSTRIAL LAWS AND ENVIRONMENTAL CONCERNS	

	M.Tech.(NST) - Degree Programme 2022-2023				
5.1	Economic Impacts & Commercialization of	1			
5.1	Nanotechnology				
5.2	5.2 Environmental, Health & Safety Issues				
5.3	Social & Ethical Implications	1			
5.4	Industrial Approach- Sustaining the Impact of	1			
5.4	Nanotechnology on Productivity	Ι			
5.5	Sustainability and Equity	1			
5.6	The Emerging Nano Economy	1			
5.7	Key Drivers, Challenges & Opportunities	1			
5.8	Regulation Of Nanotechnology In Consumer Products	1			
5.9	Legal Policy Issues	1			
	Total	45			

Course Designer

Dr. S. Satheeskumar (satheeskumars@ksrct.ac.in)

60 DNT E24	Secial Impact of Nanotochnology	Category	L	Т	Ρ	Credit
60 PNT E31	Social Impact of Nanotechnology	PE	3	0	0	3

Objective

- To help the learners to understand the challenges of synthesis nano materials
- To provide an overview of the Challenges in Storage and fabrication
- To familiarize learners with Challenges in Nanotoxicological management
- To familiarize the learners Challenges in health care and biomedical area
- To enlighten the learners to understand various methods, materials and it applications

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Understand the emerging ideas of challenges of synthesis of nanomaterials	Remember
CO2	To understand the specific challenges for nanomaterials	Apply
CO3	Describe the Challenges in Storage	Analyze
CO4	Recognize the Challenges fabrication of nanomaterials	Apply
CO5	Understand the Challenges in Nano toxicological management	Analyze

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	1
CO2	3	3	3	2	2	1
CO3	3	3	3	2	2	1
CO4	3	3	3	2	2	1
CO5	3	3	3	2	2	1

Dia amia Catavami	Continuous Assessn	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyze	10	10	20
Evaluate	10	10	20
Create	10	10	10

Assessment Pattern

	1.5.1			Technology al Impact of					
Department of Nanoscience and Technology Hours/Week Credit Maximum Mark								(5	
Semester	L	T	P	Total hrs.	C	C	E	Total	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		40	60	100				
	in Nanomate	-	U	-10	5	40	00	100	
			anoparticles	- Iron Oxide N	lanoparticle	s -Critical ne	eeds and		
-	•		•	of Microfluidio	•			[9]	
-	•			nthesis of Na	•				
•	on and Storag			,					
				hin Films -Su	rface Energ	y-Surface A	rea -Size,		
-			-	ity, Chemical				[9]	
Microstruc	ture-Nanoma	terials-Solic	d State Hydro	ogen Storage-	Lithium Ba	sed Recharg	geable	r - 1	
Batteries.			-				-		
Nano toxi	cological Ma	nagement	**						
Toxicant A	nalysis and C	Juality Assu	irance Princi	ples – Genera	al Policies R	elated to Ar	nalytical		
Laboratori	es – Standard	I Operating	Procedures	(SOPs) - QA/	QC Manual	s – Procedu	ral	[9]	
Manuals -	Analytical Me	thods Files	- Laboratory	y Information	Managemer	nt System (L	IMS) –		
Analytical	Measurement	t System –	Quality Assu	rance (QA) P	rocedures –	Quality Cor	ntrol (QC)		
Procedure	S								
	in Health ca								
-		-		Biological Im	•			[9]	
-		-		cle Safety - Po			⁻ - Air -	[0]	
	-	•	-	yinCardiovas	cularChaller	nges.			
	tation of Nar				-				
	-	•		of Advanced	•••	•		[9]	
-				cialization Ch	-		ortunities	[0]	
and Challe	enges – Critica	al Success	Factor - Nan	o Regulating	Mechanism				
Taythaak						I	otal Hours	45	
Textbook	、 <i>)</i>	Nonataohn		anaialization [Jan Ctanfar	d Dubliching	Taular 9 Fra	i -	
^{I.} Gro	up, 2013.			ercialization, F		-	-		
^{2.} Stor	age" springer		ijko, Zbigniev	v S. Wronski"	Nanomater	ials for Solic	State Hydrog	gen	
Reference	· /								
-				enge" Cambri				-	
2. Erno	est Hodgson "	A Text Boo	K Of Modern	Toxicology",	vviley & Sor	ns, Inc Publi	cation, 20017	•	
3. Ahn	ned S. Khan, I	Nanotechno	ology Ethical	and Social Im	plications,	1st Edition,	CRC Press, 2	012.	
Dassed in Br	S Meetina held	l on 22/11/20	123				20	(aller	

M.Tech.(NST) - Degree Programme 2022-2023

*SDG :11 safe, resilient and sustainable

*SDG:12 Ensure sustainable consumption and production patterns

No. of S.No Topic Hours **PROTOCOLS IN NANOMATERIALS** 1 Challenges - Green synthesis of Nanoparticles 1.1 1 1.2 Iron Oxide Nanoparticles 1 Critical needs and Significant 1.3 1 Development and Potential Impact of 1.4 1 Microfluidic Systems on Different Steps 1.5 Specific Challenges 1 Nanomaterials Design 1.6 1 1.7 Synthesis of Nanomaterials 1 FABRICATION AND STORAGE OF 2 NANOMATERIALS 2.1 Challenges in fabrications – Nanocomposites 1 Thin Films – Surface Energy 2.2 1 Surface Area - Size, Uniform Size Distribution 2.3 1 Morphology – Crystallinity 1 2.4 Chemical Composition 2.5 1 Storage 2.6 1 2.7 Microstructure 1 2.8 Nanomaterials – Solid State Hydrogen Storage 1 Lithium Based Rechargeable Batteries 2.9 1 3 NANOTOXICOLOGICAL MANAGEMENT Toxicant analysis 1 3.1 3.2 Quality assurance principles 1 General policies related to analytical laboratories 1 3.3 Standard operating procedures (SOPs) 3.4 1 3.5 QA/QC Manuals - Procedural Manuals 1 Analytical Methods Files 1 3.6 Laboratory Information Management System 3.7 1 (LIMS) 1 3.8 Analytical Measurement System QualityAssurance(QA), Procedures-1 3.9 QualityControl(QC) Procedures PROTOCOLS IN HEALTH CARE AND 4 **BIOMEDICAL AREA** 4.1 Challenges 1 Understanding Environmental and Biological 4.2 1 Impacts of Nanoparticles 4.3 Self Assembly 1 Molecular Manufacturing 4.4 1 Nanoparticle Safety - Pesticides - Food - Water -1 4.5 Air – Soil Biodegradable Biocompatible 2 4.6 IMPLEMENTATION OF NANOTECHNOLOGY 5 IN INDUSTRY 5.1 Effecting of The Implementation-1 Role of Advanced Technology In Implementation 5.2 1 Strategic involved in implementation 5.3 1 **Commercialization Challenges** 1 5.4 Market opportunities and challenges 1 5.5 5.6 Critical success factor 2 5.7 Nano regulating mechanism 2 Total 45

Course Content and Lecture Schedule

M.Tech.(NST) - Degree Programme 2022-2023

Course Designers

Dr.S.Satheeskumar

- satheeskumars@ksrct.ac.in

60 PNT E32	Computer Modeling and	Category	L	т	Р	Credit
00 FNT E32	Simulation	PE	3	0	0	3

Objective

- To study the basic computation methods
- To understand the modeling analysis.
- To study the Boundary analysis.
- To introduced various system modeling & mathematical approaches simulation techniques
- To highlight the different application areas.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Relate the appropriate characteristics of nanoparticles by correlating the theoretical	Understand
CO2	Draw the modeling and simulation of a digital control design approach.	Apply
CO3	Analyze various problem solving techniques with categories of software	Analyze
CO4	Discuss the monte - carlo simulation of particles in a Box - Diffusion using Matlab.	Apply
CO5	Recognize the generation and application of computers	Analyze

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	2
CO2	2	3	3	3	3	3
CO3	3	3	3	2	3	3
CO4	3	3	2	3	3	3
CO5	3	3	2	3	3	3

Assessment Pattern

Plaam'a Catagony	Continuous Assessm	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	20
Analyse	10	10	30
Evaluate	10	10	20
Create	10	10	10

		K.S.F	Rangasamy	College of	Technology	- Autonom	ous Regula	tion	
					uter Modelin				
	Department of Nanoscience and Technology								
Som	ester	ŀ	lours/Weel	k	Total hrs.	Credit	Ма	ximum Mar	ks
ocini	CSICI	L	Т	Р	rotarms.	С	С	E	Total
I	II	З	0	0	45	3	40	60	100
	-	COMPUT	-						[9]
Solut	ion of c	ordinary diffe	erential equa	ations, Initial	value and bo	undary valu	e problems.		[9]
	ELING								
					lationship of d	• •		• •	[9]
	•	t of mathe	matical mo	del. Develo	pment of rig	orous and	semirigorou	s physical	[9]
mode									
		ANANLYS							
	•		•	-	alue and bou	•	•		[9]
•			uations, Ex	plicit and Im	plicit methods	s, Finite diffe	erence meth	ods. Finite	[9]
elem	ent met	hod.							
	JLATIO							_	
	-				namics and	Monte- Carl	lo simulatior	ns. Fuzzy	[9]
•	-	l networks a	and genetic	algorithms.					
									[9]
Appli	cation o	of above to i	nodel mate		or and metallu	rgical proce	sses.		
				Total	Hours				45
Text	Books								
1.				, Modelling	and Simulatio	n Exploring	Dynamic Sy	stem Behavi	our,
		ger Cham, 2							
2.					and Simula	tion of Inte	ellect Curre	nt State ar	nd Future
Pofo	rence(s		1 Edition, IC	GI Global, 20	11.				
			nard P. Zeid	ler and And	dreas Tolk, Bo	dy of Know	ledge for Mc	deling and S	imulation:
1.					and Simulatio				
					c, Natalia Rylk				
2.					man and Hall/				5
	Ricca	rdo De As	mundis, Mo	odeling, Pro	gramming a	nd Simulati	ons Using	LabVIEW™	Software
3.		over, In Te		U ,	0				

*SDG :4 quality education and promote lifelong learning opportunities for all

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	REVIEW OF COMPUTATIONAL METHODS	
1.1	Basics of ordinary differential equations	1
1.2	Basics of ordinary differential equations	1
1.3	Solution of ordinary differential equations	1
1.4	Review of Initial value problems	1
1.5	Solve Initial value problems	1
1.6	Review of boundary value problems	1
1.7	Solve boundary value problems	1

1.8	Relate the appropriate characteristics of nanoparticles by	1
	correlating the theoretical	1
1.9	Review of Computational Methods	1
2	MODELING	
2.1	Introduction to modeling analysis	1
2.2	Classification	1
2.3	Functions	1
2.4	Limitations of different types of models	1
2.5	Interrelationship of different types of models	1
2.6	Types of mathematical model	-
2.7	Development of mathematical model	1
2.8	Development of rigorous physical models	1
2.9	Development of semi rigorous physical models	1
3	BOUNDARY ANANLYSIS	
3.1	Solution of partial differential equations	1
3.2	Initial value problems	1
3.3	boundary value problems	1
3.4	Hyperbolic	1
3.5	parabolic and elliptic equations	1
3.6	Explicit methods	1
3.7	Implicit methods	1
3.8	Finite difference methods	1
3.9	Finite element method	1
4	SIMULATION	
4.1	Survey of simulation techniques	1
4.2	Molecular dynamics simulation	1
4.3	Basics of Fuzzy Logic	1
4.4	Basics of neural networks	1
4.5	Basics of genetic algorithms	1
4.6	Monte- Carlo simulations	1
4.7	Fuzzy Logic simulation techniques	1
4.8	Neural networks simulation techniques	1
4.9	Genetic algorithms simulation techniques	1
5	APPLICATIONS	
5.1	Molecular dynamics simulation to model material	2
5.2	Monte- Carlo simulations to model material	1
5.3	Fuzzy Logic simulation techniques to model material	1
5.4	Neural networks simulation techniques to model material	1
5.5	Genetic algorithms simulation techniques to model material	1
5.6	Behavior process	1
5.7	Metallurgical processes	1
5.8	Application of behavior and metallurgical processes	1
	Total	45

Course Designers

Dr.T.Baranidharan

- <u>baranidharan@ksrct.ac.in</u>

CO DNT E22	Nanotechnology in Defense and	Category	L	т	Р	Credit
60 PNT E33	Security	PE	3	0	0	3

Objective

- To provide exposure to the students on nano science and technology in defence activities
- To explore various nanomaterials used in multifunctional systems and applications.
- To enlighten the learners to understand various applications areas of nanomaterials
- To understand Nano rods based chemical sensors for underwater applications.
- To study about the potential applications of Nanotechnology in defence activities

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Observe the military applications of nanotechnology in various propellants and explosives.	Remember
CO2	Develop protection the Satellites against Missile Attacks using quantum dots.	Create
CO3	Analyze the nanotechnology usage in Camouflage, Stealth, Ablative Applications.	Analyse
CO4	Address different applications of sensors with the use of Nano-enabled sensors.	Analyse
CO5	Acquire knowledge of Nanotechnology in safety and environment applications	Apply

Mapping with Programme Outcomes

COs	P01	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	3	2
CO2	2	3	2	3	2	1
CO3	3	2	3	2	2	2
CO4	3	2	3	2	3	2
CO5	2	2	2	3	2	3

Assessment Pattern

Ploom's Catagony	Continuous Assessm	End Sem Examination	
Bloom's Category	1 2		(Marks)
Remember	10	10	10
Understand	10	10	30
Apply	10	10	20
Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	0

	K.S.F			- Degree Program Technology			tion	
		60 PNT E33	3 - Nanotecl	hnology in D	efense and	Security *		
Department of Nanoscience and Technology								
Semester Hours/Week		Total hrs	Credit	М	aximum Mark	S		
	L	Т	Р		С	С	E	Total
	3	0	0	45	3	40	60	100
Nano Science and Technology activities Pathways to physical protection – Responding to a new threat environment – Nanotechnology enabled bio chemical weapons – Nuclear Bio Chemical (NBC) Sensor- Military applications – Propulsion and vehicles – Propellants and Explosives – Artificial intelligence materials.								[9]
Detection a from missil reinforced o catalysts fo	e attacks – composites for r composite s	cs of chemic Nanotechr or structural solid propell	al and biolo hology for a and ablative	gical agents – camouflage a e applications	ind stealth	Application	s – Nano-	[9]
Nano-mech Time Anti-v	ibration mou	ors for Secu nt using a N	ano shear th	veillance Syst nickening fluid erwater, LPG	– Nano-cry	stallites for	0.	[9]
Applications of Nanocomposites Role of Nanotechnology in Next Generation Permanent Magnets – Nano Structured Steels for next generation power plants – Polymer Nanocomposites for Defence applications – Nanofluids in reinforcing soft body armour materials – Super hydrophobic coatings – Nano electron emitters for vacuum electron devices.						[9]		
Nanotechno and early o biomedical purification	blogy for env liagnostics in and cance unit - Texti	rironmental n contamina r hyperther les - Biolog	safety – Gre ant food – mia Applica gical and m	Healthcare een nanocata Nanomaterial ations – Car nedical applic Ils and Batteri	s in Dentist bon nanoti ations - M	try – Nanon ube for mo	naterilas in obile water	[9]
			Total	Hours				45
1 in the 2019 2 Terri Peac	uri Sharon, A Defense Inc. A. Camesan e and Securi	dustry: Adva	ances, Innov	z, Chetna Sha ation, and Pra id Chemical a and Biology) ´	actical Appli	cations, Wile al Defense (ey,Scrivener I NATO Scienc	Publisher
Reference(s): 1 R. Mahajan, "Nanotech Insights", Issue 3 Centre for Knowledge Management of Nanosci. &Technology , India, 2014.								
 Christian Ngo, Marcel H. Van de Voorde, "Nanotechnology for Defense and Security", Springer, 2014. Jerome. C. Glenn, "Nanotechnology: Future military environmental health considerations", Elsevier, 								
³ 2006				-				
4 Chan 2009	•	notibres tabl	rication, per	formance and	application	s, Nova Sci	ence Publishe	ers inc,

*SDG :8 productive employment

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	NANO SCIENCE AND TECHNOLOGY ACTIVITIES	
1.1	Pathways to physical protection	1
1.2	Responding to a new threat environment	1

	M.Tech.(NST) - Degree Programme 2022-2023	
1.3	Nanotechnology enabled bio chemical weapons -	1
1.5	Nuclear Bio Chemical (NBC) Sensor	I
1.4	Military applications	1
1.5	Directed self-assembly using conventional lithography	1
1.6	Propulsion and vehicles	1
1.7	Propellants and Explosives	1
1.8	Artificial intelligence materials	1
2	COUNTERMEASURE AND AEROSPACE STRATEGIES	
2.1	Detection and diagnostics of chemical and biological agents	1
2.2	Quantum Dots to protect satellites from missile attacks	1
2.3	Nanotechnology for camouflage and stealth Applications	1
2.4	Nano-reinforced composites for structural and ablative application	1
2.5	Nanocomposite as burning rate catalysts for composite solid propellants	1
3	SENSORS AND ACTUATORS	
3.1	Nano-mechanical Sensors for Security and Surveillance Systems	1
3.2	Nuclear Technology	1
3.3	Real Time Anti-vibration mount using a Nano shear thickening fluid	1
3.4	Nano-crystallites for Transducer Applications	1
3.5	Nanomaterials for sensors	1
3.6	Underwater, LPG and Chemical agent.	1
4	APPLICATIONS OF NANOCOMPOSITES	
4.1	Role of Nanotechnology in Next Generation Permanent Magnets	1
4.2	Nano Structured Steels for next generation power plants – Polymer Nanocomposites for Defence applications	1
4.3	Nanofluids in reinforcing soft body armour materials	1
4.4	Super hydrophobic coatings	1
4.5	Nano electron emitters for vacuum electron devices	1
5	NANOTECHNOLOGY IN SAFETY, ENVIRONMENT AND HEALTHCARE	
5.1	Nanotechnology for environmental safety	1
5.2	Green nanocatalyst	1
5.3	Nanoparticles in bio-sensing and early diagnostics in contaminant food	1
5.4	Nanomaterials in Dentistry	1
5.5	Nanomaterilas in biomedical and cancer hyperthermia Applications	1
5.6	Carbon nanotube for mobile water purification unit	1
5.7	Textiles	1
5.8	Biological and medical applications	1
	Membrane based water purification, Energy and	
5.9	Environment	1
5.10	Solar cells and Batteries	1
-	Total hours	45

Course Designer

Dr. A. Karthik (karthik@ksrct.ac.in)

M.Tech.(NST) - Degree Programme 2022-2023

60 PNT E34	Nanotechnology in Food	Category	L	т	Р	Credit	
00 FNT E34	Preservation and Safety Management	PE	3	0	0	3	

Objective

- To acquire extensive knowledge in food safety and quality control.
- To understand food safety management in different packing process
- To study the food Laws and its standard measurement system
- To analysis food equipment, disposal of waste, importance food preservation materials.
- To learn the Nanotechnology in Food Packaging techniques, advantages and its applications.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Explore basic principles of food safety quality control and the safety measures in Handling of food equipment and disposal of waste.	Apply
CO2	Recognize the importance of food quality management and the importance of GLP, GMP and HACCP concept.	Analyze
CO3	Follow the regulations of FSSAI, ISO, food Adulteration Act and the importance of export opportunities and its regulations related to food products	Apply
CO4	Identify the significance of packaging, the regulations and designing for packaged foods.	Remember
CO5	Analyze the roles of nanotechnology in packaging, the types of Nanocoating and food packaging applications	Apply

Mapping with Programme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	3	3	1
CO2	3	2	2	2	2	3
CO3	3	2	2	3	3	1
CO4	3	3	3	3	2	3
CO5	3	3	3	1	2	2

Assessment Pattern

Plaam'a Catagony	Continuous Assessm	End Sem Examination	
Bloom's Category	1 2		(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	10

	N.O.I	angasam	y College of	Technology	- Autonom	ous Regula	ition	
	60 PNT E34			Food Preserv			agement *	
				anoscience a				_
Semeste	·	lours/Wee		Total hrs.	tal hrs		Maximum Mar	
	L	Т	Р		C	C	E	Total
	3	0	0	45	3	40	60	100
	ety implemen							
-	of food safety		-	-			-	
	dustries; clea	-		•	• •	•	-	[9]
	n - types ; sel	-	• •	uipment; Safe	ty limits of s	sanitizers; p	est control;	
	ent and dispo		Э.					
	ety Managem							
	ety and quality							[9]
	ol in food ind	•	-	• •); Good ma	nufacturing	practices	[0]
. ,	azard analysis	of critical of	controlpoints	(HACCP).				
Food law								
	ety and Star		. ,		•	•		[9]
	n of Food Adu				•		es for food	[0]
products -	APEDA (Aari	cultural and						
·	· •		a Processea	Foods Export	Developme	nt Authority);WTO	
Food Pac	kaging			· · ·			,	
Food Pac Packaging	kaging g – it's importa	ance, esse	ntial features	s of an ideal p	backage; va	rious food	packaging	
Food Pac Packaging materials	kaging g – it's importa and their ch	ance, esse aracteristic	ntial features s, methods	s of an ideal µ of package	backage; va testing, mo	rious food odern and	packaging traditional	[9]
Food Pac Packaging materials packaging	kaging g – it's importa and their ch g material rec	ance, esse aracteristic ent trends	ntial features s, methods in the field	s of an ideal µ of package d of packagir	backage; va testing, mo ng (active p	rious food odern and packaging,	backaging traditional intelligent	[9]
Food Pac Packaging materials packaging packaging	kaging g – it's importa and their ch g material rec g, RFID), regul	ance, esse aracteristic ent trends ations and	ntial features s, methods in the field designing fo	s of an ideal µ of package d of packagir	backage; va testing, mo ng (active p	rious food odern and packaging,	backaging traditional intelligent	[9]
Food Pac Packaging materials packaging packaging Nanotech	kaging g – it's importa and their ch material red g, RFID), regul nology in Fo	ance, esse aracteristic ent trends ations and od Packag	ntial features s, methods in the field designing fo jing	s of an ideal p of package d of packagir r packaged fo	backage; va testing, mo ng (active p ods, nutritic	rious food p odern and packaging, pnal labeling	packaging traditional intelligent	[9]
Food Pac Packaging materials packaging packaging Nanotech	kaging g – it's importa and their ch material rec n, RFID), regul mology in Fo nology in food	ance, esse aracteristic ent trends ations and od Packag industry an	ntial features s, methods in the field designing fo jing d packaging,	s of an ideal p of package d of packagin r packaged fo , Food process	backage; va testing, mo ng (active p ods , nutritic	rious food podern and packaging, pnal labeling -security –C	oackaging traditional intelligent ontaminant	[9]
Food Pac Packaging materials packaging packaging Nanotech Nanotech detection	kaging g – it's importa and their ch material rec g, RFID), regul mology in food – Smart pac	ance, esse aracteristic ent trends ations and od Packag industry an kaging, An	ntial features s, methods in the field designing fo jing d packaging, timicrobial F	s of an ideal p of package d of packagin r packaged for , Food process unctionality, 1	backage; va testing, mo ng (active p ods, nutritic sing and bio- Nano Struct	rious food p odern and packaging, onal labeling -security –C tured Coatin	oackaging traditional intelligent ontaminant	
Food Pac Packaging materials packaging packaging Nanotech Nanotech detection	kaging g – it's importa and their ch material rec n, RFID), regul mology in Fo nology in food	ance, esse aracteristic ent trends ations and od Packag industry an kaging, An	ntial features s, methods in the field designing fo jing d packaging, timicrobial F	s of an ideal p of package d of packagin r packaged for , Food process unctionality, 1	backage; va testing, mo ng (active p ods, nutritic sing and bio- Nano Struct	rious food p odern and packaging, onal labeling -security –C tured Coatings.	packaging traditional intelligent ontaminant ng, Natural	[9]
Food Pac Packaging materials packaging packaging Nanotech Nanotech detection biopolyme	kaging g – it's importa and their ch material rec RFID), regul mology in Fo nology in food – Smart pactors, advantage	ance, esse aracteristic ent trends ations and od Packag industry an kaging, An	ntial features s, methods in the field designing fo jing d packaging, timicrobial F	s of an ideal p of package d of packagin r packaged for , Food process functionality, 1	backage; va testing, mo ng (active p ods, nutritic sing and bio- Nano Struct	rious food p odern and packaging, onal labeling -security –C tured Coatings.	oackaging traditional intelligent ontaminant	
Food Packaging materials packaging packaging Nanotech Nanotech detection biopolyme Text Boo	kaging g – it's importa and their ch g material rec g, RFID), regul nology in Fo nology in food – Smart pacters, advantage	ance, esse aracteristic ent trends ations and od Packag industry an kaging, An s of nanom	ntial features s, methods in the field designing fo jing id packaging, timicrobial F naterials in fo	s of an ideal p of package d of packagin r packaged for , Food process unctionality, I od packaging	backage; va testing, mo ng (active p ods, nutritic sing and bio- nano Struct applications	rious food podern and packaging, pnal labeling -security –C tured Coating s. T	oackaging traditional intelligent ontaminant ng, Natural otal Hours	[9] 45
Food Pac Packaging materials packaging packaging Nanotech Nanotech detection biopolyme Text Boo	kaging g – it's importa and their ch material rec RFID), regul mology in Fo nology in food – Smart pactors, advantage	ance, esse aracteristic ent trends ations and od Packag industry an kaging, An s of nanom S. Vijayaku	ntial features s, methods in the field designing fo jing id packaging, timicrobial F naterials in fo mar, Rites	s of an ideal p of package d of packagin r packaged fo , Food process functionality, I od packaging h Kumar, Nan	backage; va testing, mo ng (active p ods, nutritic sing and bio- Nano Struct applications otechnology	rious food podern and packaging, pnal labeling -security –C tured Coating s. T	oackaging traditional intelligent ontaminant ng, Natural otal Hours	[9] 45
Food Pac Packaging materials packaging packaging Nanotech Nanotech detection biopolyme Text Boo 1 Aru Qua 2 Ves	kaging g – it's importa and their ch material rec nology in Fo nology in food – Smart pact ers, advantage ks n Sharma, P.S ality Monitoring lesmoy Ander	ance, esse aracteristic ent trends ations and od Packag industry an kaging, An s of nanom S. Vijayaku g, Elsevier, son, Food	ntial features s, methods in the field designing fo jing d packaging, timicrobial F naterials in fo mar, Rites <u>Imprint, Aca</u> Saftey Mana	s of an ideal p of package d of packagir r packaged fo , Food process functionality, T od packaging h Kumar, Nan demic Press,	backage; va testing, mo ng (active p ods , nutritic sing and bio- Nano Struct applications otechnology 2022.	rious food p odern and packaging, onal labeling -security –C tured Coatin s. T y Applicatior	oackaging traditional intelligent ontaminant ng, Natural otal Hours	[9] 45 afety and
Food Packaging materials packaging packaging packaging Nanotech detection biopolyme Text Boo 1 Aru Qua 2 Ves Elso	kaging g – it's importa and their ch material rec nology in Fo nology in food – Smart pactors, advantage ks n Sharma, P.S ality Monitoring lesmoy Ander evier, Academ	ance, esse aracteristic ent trends ations and od Packag industry an kaging, An s of nanom S. Vijayaku g, Elsevier, son, Food	ntial features s, methods in the field designing fo jing d packaging, timicrobial F naterials in fo mar, Rites <u>Imprint, Aca</u> Saftey Mana	s of an ideal p of package d of packagir r packaged fo , Food process functionality, T od packaging h Kumar, Nan demic Press,	backage; va testing, mo ng (active p ods , nutritic sing and bio- Nano Struct applications otechnology 2022.	rious food p odern and packaging, onal labeling -security –C tured Coatin s. T y Applicatior	oackaging traditional intelligent ontaminant ng, Natural otal Hours	[9] 45 afety and
Food Packaging materials packaging packaging packaging Nanotech detection biopolyme Text Boo 1 Aru Qua 2 Ves Else Referenc	kaging g – it's importa and their ch material rec nology in Fo nology in food – Smart pac smart	ance, esse aracteristic ent trends ations and od Packag industry an (aging, An s of nanom b, Elsevier, son, Food ic Press, 2	ntial features s, methods in the field designing fo jing Id packaging, timicrobial F naterials in fo mar, Rites Imprint, Aca Saftey Mana 023.	s of an ideal p of package d of packagin r packaged for , Food process unctionality, T od packaging h Kumar, Nan demic Press, gement, A Pra	backage; va testing, mo ng (active p ods , nutritic sing and bio- Nano Struct applications otechnology 2022. actical guide	rious food p odern and packaging, onal labeling -security –C tured Coatin s. T / Application	oackaging traditional intelligent ontaminant ng, Natural otal Hours ns for Food S dustry,2 nd E	[9] 45 afety and
Food Packaging materials packaging packaging packaging Nanotech detection biopolyme Text Boo 1 Aru Qua 2 Ves Elso Referenc 1 Ath	kaging g – it's importa and their ch material rec nology in Fo nology in food – Smart pac ers, advantage ks n Sharma, P.S ality Monitoring elesmoy Ander evier, Academ e(s): alye AS. Plast	ance, esse aracteristic ent trends ations and od Packag industry an caging, An s of nanom S. Vijayaku g, Elsevier, son, Food ic Press, 2 ics in Food	ntial features s, methods in the field designing fo jing id packaging, timicrobial F naterials in fo mar, Rites Imprint, Aca Saftey Mana 023.	s of an ideal p of package d of packagin r packaged for , Food process unctionality, I od packaging h Kumar, Nan demic Press, gement, A Pra	backage; va testing, mo ng (active p ods, nutritic sing and bio- Nano Struct applications otechnology 2022. actical guide	rious food podern and packaging, onal labeling -security –C tured Coating s. T Application e for food Inc	oackaging traditional intelligent ontaminant ng, Natural otal Hours dustry,2 nd E	[9] 45 afety and dition,
Food Packaging materials packaging packaging packaging Nanotech detection biopolyme Text Boo 1 Aru Qua 2 Ves Elso Referenc 1 Ath 2 Mod	kaging g – it's importa and their ch material rec RFID), regul mology in food – Smart pac ers, advantage ks n Sharma, P.S ality Monitoring lesmoy Ander evier, Academ e(s): alye AS. Plast timone, Sara	ance, esse aracteristic ent trends ations and od Packag industry an (aging, An s of nanom S. Vijayaku g, Elsevier, son, Food ic Press, 2 ics in Food and Wallac	ntial features es, methods in the field designing fo jing id packaging, timicrobial F naterials in fo mar, Rites Imprint, Aca Saftey Mana 023. Packaging T e, Carot, —F	s of an ideal p of package d of packagin r packaged for , Food process unctionality, I od packaging h Kumar, Nan <u>demic Press,</u> gement, A Pra	backage; va testing, mo ng (active p ods, nutritic sing and bio- Nano Struct applications otechnology 2022. actical guide Hill Publishin Industry Bri	rious food podern and packaging, onal labeling -security –C tured Coating s. 7 Application e for food Ind ng Compan- pefing Series	backaging traditional intelligent ontaminant ng, Natural otal Hours dustry,2 nd E dustry,2 nd E	[9] 45 afety and dition, Science,
Food Packaging materials packaging packaging packaging Nanotech Nanotech detection biopolyme Text Boo 1 Aru Qua 2 Ves Else Referenc 1 Ath 2 Moi 3 Rad	kaging g – it's importa and their ch material rec nology in Fo nology in food – Smart pac ers, advantage ks n Sharma, P.S ality Monitoring elesmoy Ander evier, Academ e(s): alye AS. Plast	ance, esse aracteristic ent trends ations and od Packag industry an kaging, An s of nanom S. Vijayakun g, Elsevier, son, Food ic Press, 2 ics in Food and Wallac FOOD QU	ntial features s, methods in the field designing fo jing d packaging, timicrobial F naterials in fo mar, Rites Imprint, Aca Saftey Mana 023. Packaging T se, Carot, —H ALITY AND S	s of an ideal p of package d of packagin r packaged fo , Food process functionality, T od packaging h Kumar, Nan demic Press, gement, A Pra Fata McGraw HACCP (Food STANDARDS	backage; va testing, mo ng (active p ods , nutritic sing and bio- Nano Struct applications otechnology 2022. actical guide Hill Publishin Industry Bri – Vol. III - F	rious food p odern and packaging, onal labeling security –C tured Coating s. T y Application e for food Inc ong Company fefing Series ood Laws a	oackaging traditional intelligent ontaminant ng, Natural otal Hours dustry,2 nd E dustry,2 nd E y 1992. s), Blackwell s nd Regulatio	[9] 45 afety and dition, Science, n - 2009

*SDG :2 food security and improved nutrition and promote sustainable agriculture

Course Content and Lecture Schedule

S.No	Торіс	No. of Hours
1	FOOD SAFETY IMPLEMENTATION	
1.1	Principles of food safety.	1
1.2	Food safety quality control.	1
1.3	Cleaning and sanitization.	1
1.4	Sterilization-physical methods.	1
1.5	Sterilization- Chemical methods and filtration.	1 ~
		F

	M.Tech.(NST) - Degree Programme 2022-2023	
1.6	Pest control methods.	1
1.7	Training and education for food handling.	1
1.8	Safety limits of sanitizers.	1
1.9	Disposal of wastes.	1
2	FOOD SAFETY MANAGEMENT	
2.1	Food safety management introduction.	1
2.2	Food safety quality management system.	1
2.3	Types of hazards.	1
2.4	Control of hazards.	1
2.5	Good laboratory practices.	1
2.6	Training on GLP.	1
2.7	Good manufacturing practices.	1
2.8	Hazard analysis of critical control points.	1
2.9	HACCP principles.	1
3	FOOD LAWS	
3.1	Introduction to food laws	1
3.2	FSSAI	1
3.3	ISO 22000	1
3.4	Prevention of food adulteration.	1
3.5	QA audit	1
3.6	Intellectual property rights	1
3.7	Export opportunities of food	1
3.8	APEDA	1
3.9	World Trade Organization	1
4	FOOD PACKAGING	
4.1	Food packaging introduction	1
4.2	Essential features of an ideal packaging	1
4.3	Various food packaging materials	1
4.4	Methods of package testing	1
4.5	Modern and traditional packaging	1
4.6	Active packaging methods	1
4.7	Intelligent packaging and RFID packaging	1
4.8	Regulations and designing for packaged foods.	1
4.9	Nutritional labelling	1
5	NANOTECHNOLGOY IN FOOD PACKAGING	
5.1	Nanotechnology in food industry	2
5.2	Food processing methods	1
5.3	Biosecurity	1
5.4	Contaminant detection methods	1
5.5	Smart packaging techniques	1
5.6	Antimicrobial functionality of materials	1
5.7	Nanostructured coatings.	1
5.8	Natural biopolymers	1
5.9	Advantages of nanomaterials in food packaging	1
	Total	45

Course Designers

Mr. R. Mohanraj (mohanrajr@ksrct.ac.in)

60 DNT E25	Nanotechnology in Textile and	Category	L	т	Р	Credit
60 PNT E35	Agriculture Industry	BS	3	0	0	3

Objective

- To provide an insight into the fundamentals of Nanomaterials based fabrics.
- To address modern trends in nano Nano Fiber Production
- To help the learners to understand Nano Finishing In Textiles
- To obtain the knowledge of the Agricultural Nanotechnology
- To know the role of nanoparticles in Precision farming and Plant Resource Management for future amelioration.

Prerequisite

NIL

Course Outcomes

On the successful completion of the course, students will be able to

CO1	Learn the scientific concepts underlying engineering and technological applications in Nano-textiles	Understand
CO2	Identify suitable nanoparticles & Nano fibers in design methodology in textiles	Analyze
CO3	Successful completion of Nano Composites implementation in textiles	Analyze
CO4	Evaluate agricultural technology for precision farming using Nano sensors	Apply
CO5	Familiarize with the regulations and guidelines in agricultural sector	Remember

Mapping with Programme Outcomes

	COs	PO1	PO2	PO3	PO4	PO5	PO6
ĺ	CO1	3	3	2	2	2	2
ĺ	CO2	2	3	2	3	2	2
ĺ	CO3	3	3	2	2	2	3
	CO4	2	2	2	2	3	3
	CO5	3	3	2	2	2	2

Assessment Pattern

Plaam'a Catagony	Continuous Asses	End Sem Examination	
Bloom's Category	1	2	(Marks)
Remember	10	10	10
Understand	10	10	10
Apply	10	10	30
Analyse	10	10	20
Evaluate	10	10	20
Create	10	10	10

M.Tech.(NST) - Degree Programme 2022	2-2023
--------------------------------------	--------

	60 PN	NT E35 - Nand	otechnology	in Textile a	and Agricult	ure Industry	y			
			Tech – Nand							
0		Hours / Wee		Total	Credit		imum Marks	5		
Semester	L	Т	Р	Hours		CA	CA E		ES	Tota
	3	0	0	45	3	40	60	100		
Properties or Physical prop assembly- Hy coating.	perties - M	echanical pro						[9]		
Electro spinn electro spun Nano fiber - C	ng of Nano Controlling th – Electrosp	onality of Nar fibers – Cha ne morpholog pinning by ca	racterization ies of electro	spun Nano	fiber - Nanos	tructured po	lymers with	[9]		
Scaffold fabr switchable co	ication and batings - Ar	mposites in 1 electrospinn nti-adhesive n polymer Nanc	ing- scaffold anocoating o	of fibers and	l textiles - P	olymer fiber	using melt	[9]		
system- Prec protection- Se	urce manag ision agricu eed	iculture * jement- Soil : lture monitorir developmen	ng system- S	mart deliver	y systems- C	rop improve	ment- Crop	[9]		
Applications Agriculture: N diseases and crop nutrition	lano formul residues- i Nano robot	and Agricultor ations of agro- nano sensor f tics in agricultor tion, flame ret	ochemicals- r or air pollutic ure. Textile :	on control Soil resistan	Nano pestic ce, wrinkle re	ides- smart ⁻ esistance, ar	fertilizer for nti-bacteria,	[9]		
							Total ho	urs · 4		
Text Books								uio. +(
	ldin Haii 🗍									
1 Aminoc Wiley, 2	2021	ıqman Jamee								
1 Aminoc Wiley, 2 2 Baby K	2021 umari, M. A	uqman Jamee Inwar Mallick, Ilture, CRC P	Manoj K. So							
1 Aminoo Wiley, 2 2 Baby K Sustair	2021 umari, M. A able Agricu	nwar Mallick,	Manoj K. So							
1Aminoc Wiley, 22Baby K SustairReference(s)1Javed	2021 umari, M. A able Agricu : N. Sheikh	nwar Mallick, Ilture, CRC P	Manoj K. So Press, 2021 abbir, Shake	lanki, Sures el Ahmed,	h Kumar Ver	ma, Nanoteo	chnology in	dustry,		
1Aminod Wiley, 22Baby K Sustair2Baby K SustairReference(s)1Javed Nanom 2	2021 umari, M. A lable Agricu : N. Sheikh aterials, En a Joshi, Na	nwar Mallick, Ilture, CRC P	Manoj K. So Press, 2021 abbir, Shake dvanced Mo r in Textiles A	lanki, Sures eel Ahmed, dification Te	h Kumar Ver Frontiers o chniques, W	ma, Nanoteo of Textile M /iley, 2020	chnology in Materials Po	dustry,		

*SDG :2 Promote sustainable agriculture

Course Content and Lecture Schedule

S. No	Торіс	No. of Hours
1	Properties of Nano fibers	
1.1	Physical properties	1
1.2	Mechanical properties	1
1.3	Thermal properties	1
1.4	Chemical properties	1
1.5	Self-assembly	1
1.6	Hydrophobic properties	1
1.7	Hydrophilic properties	1
1.8	Electrical properties	1
1.9	Super paramagnetic coating	1
2	Production and Functionality of Nano fibers	
2.1	Electro spinning of Nano fibers	1
2.2	Characterization analysis of Nanofibers	1
2.3	Continuous yarns from electro spun Nano fiber	1
2.4	Controlling the morphologies of electro spun Nano fiber	1
2.5	Nanostructured polymers with cyclodextrins	1
2.6	Electrospinning by capillary method	1
2.7	charge injection method	1
2.8	Preparation of polymer Nano composites	1
2.9	Preparation of clay Nano composites	1
3	Fabrication of nano composites in Textiles	
3.1	Scaffold fabrication	1
3.2	Electrospinning	1
3.3	scaffolds for tissue engineering	1
3.4	Synthesis of smart switchable coatings Anti-adhesive nanocoating of fibers	1
3.5	0	1
3.6	Anti-adhesive nanocoating of textiles Polymer fiber using melt spinning	1
3.7		1
3.8	Multifunctional polymer Nano composites nylon-6 Nano composites from polymerization	1
3.9	Nanotechnology in Agriculture	1
4	Natural resource management	1
4.1	Soil fertility management	
4.2	Precision farming and smart delivery system	1
4.3	Precision agriculture monitoring system	1
4.4	Smart delivery systems	1
4.5	Crop improvement	1
4.6	Crop protection- Seed germination, growth and development	1
4.7	Sensing of air pollutant by nanomaterial	1
4.8	soil remediation-plant Nano bionics	1
4.9	Applications	1
5	Agriculture: Nano formulations of agrochemicals	
5.1	nano sensors in crop protection	1
5.2	Identification of diseases and residues	1
5.3	Nano sensor for air pollution control, Nano pesticides	1

	M.Tech.(NST) - Degree Programme 2022-2023				
5.5	Smart fertilizer for crop nutrition-Nano robotics in agriculture.	1			
5.6	Textile : Soil resistance, wrinkle resistance	1			
5.7	anti-bacteria, anti-static and UV-protection	1			
5.8	flame retardation	1			
5.9	Improvement of dye ability and Self-cleaning fabrics.	1			
	Total	45			

Course Designers

Dr.T.Baranidharan

- baranidharan@ksrct.ac.in

		Category	L	Т	Ρ	Credit
60 PNT E36	Self Assembly of Nanostructures	PE	3	0	0	3

Objective(s)

- To extend their knowledge of design of innovative nanostructured materials based on basic chemistry, physics, biology
- To apply the self-assembly concepts in nanoelectronics, nano photovoltaic and energy materials

Prerequisite

Nil

Course Outcomes

On the successful completion of the course, students will be able

CO1	To know about the basic concept of self-assembled nanostructures	Remember, Understand, Apply
CO2	To know more about the nanomanipulators and design of materials	Remember, Understand, Aanalyze
CO3	Identify the fabrication of nanostructured materials	Remember, Understand, Analyze
CO4	Identify the natural nanomaterials	Remember, Understand, Apply
CO5	Understand the applications of nanomaterials in biological materials	Remember, Understand, Apply

Mapping with Programme Outcomes

COURSE NAME	со	РО							PSO		
COURSE NAME		1	2	3	4	5	6	1	2	3	
	CO1	3	3	1	3	2	3	3	1	3	
	CO2	2	2	2	2	3	2	3	1	3	
Self-Assembly of Nanostructures	CO3	3	3	2	2	2	3	3	3	3	
	CO4	2	3	3	2	2	2	3	1	3	
	CO5	3	3	2	1	3	2	3	2	3	

Note: 3 – Strong Contribution; 2 – Average Contribution; 1 – Some Contribution

M.Tech.(NST) - Degree Programme 2022-2023

Assessment Pattern

Bloom's Category	Continuous Ass (Mar		End Semester Examination (Marks)		
	1	2			
Remember	10	10	20		
Understand	10	10	30		
Apply	10	10	20		
Analyze	10	10	10		
Evaluate	10	10	10		
Create	10	10	10		

		n.			e of Technolog			2	
					f Assembly of				
<u> </u>		-			no Science an				
Semest	nester	Hours/Week		C P	Total hrs.	Credit	Maximum Marks		
		L 3	T	<u>Р</u> 0	45	C 3	CA 40	ES 60	Total
		-	sembly pro	•	40	3	40	00	
Self-o physi	organiza ical, biol	ition of na ogical self-a	nomaterials	s-Growth n Assembling	nechanism-self and patterning lanowires-Nanc	of particles-	of nanostruc self organiza	tures-chem tion of diffe	ical, erent[9]
Self-a	assembl		vers(SAM)-g		assembly-Nano rippers-Design			graphy-Sur	face[9]
	•	PAPPROA		1		5 11	<u> </u>		
Botto relate	om up m ed devi	anufacturin ces-Langmu	g-bottom up uir bladgett		-self-assembly -principle of for nolayer-fabricat				ltaic from ^[9]
		E MATERIA	•		iolayer labiloat			10	
mono natur	assembl olayers-a ral nanos	applications	ro contact -Macroscop	printing-ci	reating the st	tamp-substra	ate-creating	self-assem	bled
		NS OF SE	ials LF-ASSEM	BLE NANO	MATERIALS				g in ^[9]
Bio ii syste	nspired ems-sup	ONS OF SE approach f erhydrophol	ials LF-ASSEM or complex bicity-self-cl	BLE NANO super stru eaning pro		logical world ling ordering	I-self-assemb g and function	bly in biolog	g in ^[9]
Bio ii syste nano	nspired ems-sup	ONS OF SE approach f erhydrophol	ials LF-ASSEM or complex bicity-self-cl	BLE NANO super stru eaning pro	MATERIALS ctures and bio perty-multi sca	logical world ling ordering	I-self-assemb g and function	bly in biolog	g in ^[9]
Bio ii syste nano Tota l	nspired ems-supe scale m	DNS OF SE approach f erhydrophol aterials: pro	ials LF-ASSEM or complex bicity-self-cl	BLE NANO super stru eaning pro	MATERIALS ctures and bio perty-multi sca	logical world ling ordering	I-self-assemb g and function	bly in biolog	g in ^[9] gical gical ^[9]
Bio ii syste nano Total Text	nspired ems-supe scale ma I Hours Book(s	DNS OF SE approach f erhydrophol aterials: pro	ials LF-ASSEM or complex picity-self-cl teins-lipids-	BLE NANO super stru eaning pro DNA and R	MATERIALS ctures and bio perty-multi sca	logical world ling ordering composite ma	I-self-assemb g and functio aterials.	bly in biolog on in biolog	g in ^[9] gical gical ^[9] 45
Bio ii syste nano: Total Text 1.	nspired ems-sup scale ma I Hours Book(s Shafigh	DNS OF SE approach f erhydrophol aterials: pro): Mehraeen,	ials LF-ASSEM or complex picity-self-cl teins-lipids- Self-Asser	BLE NANO super stru eaning pro DNA and R nbly of Nan	MATERIALS ctures and bio perty-multi sca NA-shell as a c	logical world ling ordering composite ma d Patchy Nar	I-self-assemb g and functio aterials. hoparticles, Ir	bly in biolog on in biolog ntechOpen,	g in ^[9] gical [9] 45 2020
Bio ii syste nano Tota l Text 1.	nspired ems-sup scale ma I Hours Book(s Shafigh Himadri	DNS OF SE approach f erhydrophol aterials: pro):): Mehraeen, B. Bohidar	ials LF-ASSEM or complex picity-self-cl teins-lipids- Self-Asser	BLE NANO super stru eaning pro DNA and R nbly of Nan	MATERIALS ctures and bio perty-multi sca NA-shell as a c	logical world ling ordering composite ma d Patchy Nar	I-self-assemb g and functio aterials. hoparticles, Ir	bly in biolog on in biolog ntechOpen,	g in ^[9] gical [9] 45 2020
Bio ii syste nano: Total Text 1. 2 Refe	nspired ems-supe scale mi I Hours Book(s Shafigh Himadri 2017 rence(s Alexand	DNS OF SE approach f erhydrophol aterials: pro): Mehraeen, B. Bohidar): dru Grumez	ials LF-ASSEM or complex picity-self-cl teins-lipids- Self-Asser , Kamla Rav	BLE NANO super stru eaning pro DNA and R nbly of Nan wat, Desigr	MATERIALS ctures and bio perty-multi sca NA-shell as a c ostructures and n of Nanostructu	logical world ling ordering composite ma d Patchy Nar ures Self-Ass	I-self-assemb g and function aterials. hoparticles, Ir sembly of Na	oly in biolog on in biolog ntechOpen, nomaterials	g in ^[9] gical [9] 45 2020
Bio ii syste nano Total Text 1. 2 Refe 1. 2.	nspired ems-supe scale ma I Hours Book(s Shafigh Himadri 2017 rence(s Alexand Nanobid Hao Wa Singapo	DNS OF SE approach f erhydrophol aterials: pro): Mehraeen, B. Bohidar): dru Grumeze pmaterials, ang, Li-Li Li, pre, 2018.	ials LF-ASSEM or complex picity-self-cl teins-lipids- Self-Asser , Kamla Rav escu, Fabric Elsevier Sci In Vivo Sel	BLE NANO super stru eaning pro DNA and R nbly of Nan wat, Desigr cation and S ence,2016. f-Assembly	MATERIALS ctures and bio perty-multi sca NA-shell as a c ostructures and n of Nanostructu	logical world ling ordering composite ma d Patchy Nar ures Self-Ass of Nanobioma	I-self-assemb g and function aterials. hoparticles, Ir sembly of Na aterials Applicat	oly in biolog on in biolog ntechOpen, nomaterials cations of ions, Spring	g in ^[9] gical [9] 45 2020 s, Wiley

*SDG :4 quality education and learning opportunities for all

Course Content and Lecture

Schedule

S. No.	Topics	No. of hours				
1.0	INTRODUCTION					
1.1	Self-organization of nanomaterials	1				
1.2	Growth mechanism	2				
1.3	Self-assembly of nanostructures	1				
1.4	Chemical, physical, biological self-assembly					
1.5	Assembling and patterning of particles	1				
1.6	Self-organization of different Nano morphologies	2				
1.7	Quantum dots	1				
1.8	Nanorods-nanowires-nanotubes					
2.0	FABRICATION METHODS					
2.1	Self-assembled monolayers(SAM)	1				
2.2	Guided self-assembly	1				
2.3	Nanolithography	2				
2.4	Surface topography	1				
2.5	Surface wetting	1				
2.6	Grippers-Design-gripper arm geometry	1				
2.7	Electrostatic force	1				
2.8	Nanomanipulators	1				
3.0	BOTTOM UP APPROACH					
3.1	Bottom up manufacturing-	1				
3.2	Self-assembly of single electron transistor	2				
3.3	Photovoltaic related devices	1				
3.4	Langmuir bladgett films(LB)	1				
3.5	Principle of formation of monolayer formation	1				
3.6	From molecules to nanoparticles	1				
3.7	Compression of monolayer-fabrication of LB films	1				
3.8	Applications	1				
4.0	NANOSCALE MATERIALS					
4.1	Self-assembly by micro contact printing	1				
4.2	Creating the stamp	1				
4.3	Creating self-assembled monolayers	1				
4.4	Substrate applications	2				
4.5	Macroscopic expressions of Natural nanomaterials	2				
4.6	Hierarchical ordering in natural nanoscale materials	2				
5.0	APPLICATIONS					
5.1	Bio inspired approach for complex super structures and biological world	2				
5.2	Self-assembly in biological systems	1				
5.3	Super hydrophobicity	1				
5.4	Self-cleaning property	1				
5.5	Multi scaling ordering and function in biological nanoscale materials	1				
5.6	Proteins-lipids	2				
5.7	DNA and RNA	1				
5.8	Shell as a composite materials	1				

Course Designer

Mr.R.Mohanraj - mohanrajr@ksrct.ac.in

